193 research outputs found

    Processing peptidase of Neurospora mitochondria

    Get PDF
    Subunit 9 (dicyclohexylcarbodiimide binding protein, 'proteolipid') of the mitochondrial F1F0-ATPase is a nuclearly coded protein in Neurospora crassa. It is synthesized on free cytoplasmic ribosomes as a larger precursor with an NH2-terminal peptide extension. The peptide extension is cleaved off after transport of the protein into the mitochondria. A processing activity referred to as processing peptidase that cleaves the precursor to subunit 9 and other mitochondrial proteins is described and characterized using a cell-free system. Precursor synthesized in vitro was incubated with extracts of mitochondria. Processing peptidase required Mn2+ for its activity. Localization studies suggested that it is a soluble component of the mitochondrial matrix. The precursor was cleaved in two sequential steps via an intermediate-sized polypeptide. The intermediate form in the processing of subunit 9 was also seen in vivo and upon import of the precursor into isolated mitochondria in vitro. The two cleavage sites in the precursor molecule were determined. The data indicate that: (a) the correct NH2-terminus of the mature protein was generated, (b) the NH2-terminal amino acid of the intermediate-sized polypeptide is isoleucine in position-31. The cleavage sites show similarity of primary structure. It is concluded that processing peptidase removes the peptide extension from the precursor to subunit 9 (and probably other precursors) after translocation of these polypeptides (or the NH2-terminal part of these polypeptides) into the matrix space of mitochondria

    Incorporation in vivo of 14C-Labelled Amino Acids into the Proteins of Mitochondrial Ribosomes from Neurospora crassa Sensitive to Cycloheximide and Insensitive to Chloramphenicol

    Get PDF
    Radioactive amino acids were incorporated in vivo into Neurospora crassa cells, and the mitochondrial ribosomes were isolated. The incorporation of radioactivity into the proteins of these ribosomes was inhibited by cycloheximide, but not by chloramphenicol. It is therefore concluded that these proteins are synthesized on the cycloheximide sensitive and chloramphenicol insensitive cytoplasmic ribosomes

    Incorporation of amino acids into the outer and inner membrane of isolated rat liver mitochondria II

    Get PDF

    Mitochondrial porin of Neurospora crassa

    Get PDF
    cDNA encoding porin of Neurospora crassa, the major protein component of the outer mitochondrial membrane, was isolated and the nucleotide sequence was determined. The deduced protein sequence consists of 283 amino acids (29,979 daltons) and shows sequence homology of around 43% to yeast porin; however, no significant homology to bacterial porins was apparent. According to secondary structure predictions, mitochondrial porin consists mainly of membrane-spanning sided beta-sheets. Porin was efficiently synthesized in vitro from the cDNA; this allowed us to study in detail its import into mitochondria. Thereby, three characteristics of import were defined: (i) import depended on the presence of nucleoside triphosphates; (ii) involvement of a proteinaceous receptor-like component on the surface of the mitochondria was demonstrated; (iii) insertion into the outer membrane was resolved into at least two distinct steps: specific binding to high-affinity sites and subsequent assembly to the mature form
    corecore