79 research outputs found

    Impact of the California Lead Ammunition Ban on Reducing Lead Exposure in Golden Eagles and Turkey Vultures

    Get PDF
    Predatory and scavenging birds may be exposed to high levels of lead when they ingest shot or bullet fragments embedded in the tissues of animals injured or killed with lead ammunition. Lead poisoning was a contributing factor in the decline of the endangered California condor population in the 1980s, and remains one of the primary factors threatening species recovery. In response to this threat, a ban on the use of lead ammunition for most hunting activities in the range of the condor in California was implemented in 2008. Monitoring of lead exposure in predatory and scavenging birds is essential for assessing the effectiveness of the lead ammunition ban in reducing lead exposure in these species. In this study, we assessed the effectiveness of the regulation in decreasing blood lead concentration in two avian sentinels, golden eagles and turkey vultures, within the condor range in California. We compared blood lead concentration in golden eagles and turkey vultures prior to the lead ammunition ban and one year following implementation of the ban. Lead exposure in both golden eagles and turkey vultures declined significantly post-ban. Our findings provide evidence that hunter compliance with lead ammunition regulations was sufficient to reduce lead exposure in predatory and scavenging birds at our study sites

    Variant vicilins from a resistant Vigna unguiculata lineage (IT81D-1053)\ud accumulate inside Callosobruchus maculatus larval midgut epithelium

    Get PDF
    It has been demonstrated that variant vicilins are the main resistance factor of cowpea seeds (Vigna unguiculata) against attack by the cowpea beetle Callosobruchus maculatus. There is evidence that the toxic properties of these storage proteins may be related to their interaction with glycoproteins and other microvillar membrane constituents along the digestive tract of the larvae. New findings have shown that following interaction with the microvilli, the vicilins are absorbed across the intestinal epithelium and thus reach the internal environment of the larvae. In the present paper we studied the insecticidal activity of the variant vicilins purified from a resistant cowpea variety (IT81D-1053). Bioassays showed that the seeds of this genotype affected larval growth, causing developmental retardation and 100% mortality. By feeding C. maculatus larvae on susceptible and IT81D-1053 derived vicilins (FITC labelled or unlabelled), followed by fluorescence and immunogold cytolocalization, we were able to demonstrate that both susceptible and variant forms are internalized in the midgut cells and migrate inside vesicular structures from the apex to the basal portion of the enterocytes. However, when larvae were fed with the labelled vicilins for 24 h and then returned to a control diet, the concentration of the variant form remained relatively high, suggesting that variant vicilins are not removed from the cells at the same rate as the non-variant vicilins. We suggest that the toxic effects of variant vicilins on midgut cells involve the binding of these proteins to the cell surface followed by internalization and interference with the normal physiology of the enterocytes, thereby affecting larval development in vivo

    The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin

    Get PDF

    Socializing One Health: an innovative strategy to investigate social and behavioral risks of emerging viral threats

    Get PDF
    In an effort to strengthen global capacity to prevent, detect, and control infectious diseases in animals and people, the United States Agency for International Development’s (USAID) Emerging Pandemic Threats (EPT) PREDICT project funded development of regional, national, and local One Health capacities for early disease detection, rapid response, disease control, and risk reduction. From the outset, the EPT approach was inclusive of social science research methods designed to understand the contexts and behaviors of communities living and working at human-animal-environment interfaces considered high-risk for virus emergence. Using qualitative and quantitative approaches, PREDICT behavioral research aimed to identify and assess a range of socio-cultural behaviors that could be influential in zoonotic disease emergence, amplification, and transmission. This broad approach to behavioral risk characterization enabled us to identify and characterize human activities that could be linked to the transmission dynamics of new and emerging viruses. This paper provides a discussion of implementation of a social science approach within a zoonotic surveillance framework. We conducted in-depth ethnographic interviews and focus groups to better understand the individual- and community-level knowledge, attitudes, and practices that potentially put participants at risk for zoonotic disease transmission from the animals they live and work with, across 6 interface domains. When we asked highly-exposed individuals (ie. bushmeat hunters, wildlife or guano farmers) about the risk they perceived in their occupational activities, most did not perceive it to be risky, whether because it was normalized by years (or generations) of doing such an activity, or due to lack of information about potential risks. Integrating the social sciences allows investigations of the specific human activities that are hypothesized to drive disease emergence, amplification, and transmission, in order to better substantiate behavioral disease drivers, along with the social dimensions of infection and transmission dynamics. Understanding these dynamics is critical to achieving health security--the protection from threats to health-- which requires investments in both collective and individual health security. Involving behavioral sciences into zoonotic disease surveillance allowed us to push toward fuller community integration and engagement and toward dialogue and implementation of recommendations for disease prevention and improved health security

    INSECT CHYMOTRYPSINS: CHLOROMETHYL KETONE INACTIVATION AND SUBSTRATE SPECIFICITY RELATIVE TO POSSIBLE COEVOLUTIONAL ADAPTATION OF INSECTS AND PLANTS

    No full text
    Insect digestive chymotrypsins are present in a large variety of insect orders but their substrate specificity still remains unclear. Ewer insect chymotrypsins from 3 different insect orders (Dictyoptera, Coleoptera and two Lepidoptera) were isolated using affinity chromatography. Enzymes presented molecular masses in the range of 20 to 31 kDa and pH optima in the range of 7.5 to 10.0. Kinetic characterization. using different, colorimetric and fluorescent substrates indicated that insect chymotrypsins differ from, bovine chymotrypsin in their primary specificity toward small substrates (like N-benzoyl-L-Tyr p-nitroanilide) rather than on their preference for large substrates (exemplified by Succynil-Ala-Ala-Pro-Phe P-nitroanilide). Chloromethyl ketones (TPCK, N-alpha-tosyl-L-Phe chloromethyl ketone and Z-GGF-CK, N-carbobenzoxy-Gly-Gly-phe-CK) inactivated all chymotrypsins legated. Inactivation rates follow apparent first-order kinetics with variable second order rates (TPCK, 42 to 130 M(-1)s(-1); Z-GGF-CK, 150 to 450 M(-1)s(-1) that may be remarkably low for S. frugiperda chymotrypsin (TPCK, 6 M(-1)s(-1); Z-GGF-CK, 6.1 M(-1) s(-1)). Homology modelling and sequence alignment showed that. in lepidopteran chymotrypsins, differences in the amino acid residues in the neighborhood of the catalytic His 57 may affect its pKa, value. This is Proposed as the cause of the decrease in His 57 reactivity toward chloromethyl ketones. Such amino acid replacement in the active site is proposed. to be an adaptation to the presence of dietary ketones. (C) 2009 Wiley Periodicals, Inc.FAPESPFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)CNP

    Plasma membranes from insect midgut cells

    No full text
    Plasma membranes from insect midgut cells are separated into apical and basolateral domains. The apical domain is usually modified into microvilli with a molecular structure similar to other animals. Nevertheless, the microvillar structure should differ in some insects to permit the traffic inside them of secretory vesicles that may budd laterally or pinch-off from the tips of microvilli. Other microvillar modifications are associated with proton-pumping or with the interplay with an ensheathing lipid membrane (the perimicrovilllar membrane) observed in the midgut cells of hemipterans (aphids and bugs). The perimicrovillar membranes are thought to be involved in amino acid absorption from diluted diets. The microvillar and perimicrovillar membranes have densities (and protein content) that depend on the insect taxon. The role played by the microvillar and perimicrovillar proteins in insect midgut physiology is reviewed here trying to provide a coherent picture of data and highlighting further research areas.As membranas plasmĂĄticas das cĂ©lulas intestinais dos insetos apresentam um domĂ­nio apical e outro basal. O domĂ­nio apical Ă© geralmente modificado em microvilosidades com organização molecular similar a de outros animais, embora possam diferir naqueles insetos que apresentam vesĂ­culas secretoras em trĂąnsito que brotam lateralmente ou destacam-se das extremidades das microvilosidades. Outras modificaçÔes microvilares estĂŁo associadas a bombeamento de prĂłtons ou a interrelaçÔes com uma membrana lipĂ­dica (a membrana perimicrovilar) que reveste as microvilosidades de cĂ©lulas intestinais de hemĂ­pteros (pulgĂ”es e percevejos). Admite-se que as membranas perimicrovilares estejam envolvidas na absorção de aminoĂĄcidos a partir de dietas diluĂ­das. As membranas microvilares e perimicrovilares tem densidades distintas (e conteĂșdo protĂ©ico) que dependem do tĂĄxon do inseto. O papel desempenhado pelas proteĂ­nas microvilares e perimicrovilares na fisiologia intestinal dos insetos Ă© revisto, procurando fornecer uma visĂŁo coerente dos dados e chamando a atenção para novos objetivos de pesquisa
    • 

    corecore