216 research outputs found

    Failure to detect mutations in U2AF1 due to changes in the GRCh38 reference sequence

    Get PDF
    The U2AF1 gene is a core part of mRNA splicing machinery and frequently contains somatic mutations that contribute to oncogenesis in myelodysplastic syndrome, acute myeloid leukemia, and other cancers. A change introduced in the GRCh38 version of the human reference build prevents detection of mutations in this gene, and others, by variant calling pipelines. This study describes the problem in detail and shows that a modified GRCh38 reference build with unchanged coordinates can be used to ameliorate the issue

    SciClone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution

    Get PDF
    The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify the spatial origins of cells resisting therapy

    Proteomic and phosphoproteomic landscapes of acute myeloid leukemia

    Get PDF
    We have developed a deep-scale proteome and phosphoproteome database from 44 representative acute myeloid leukemia (AML) patients from the LAML TCGA dataset and 6 healthy bone marrow-derived controls. After confirming data quality, we orthogonally validated several previously undescribed features of AML revealed by the proteomic data. We identified examples of posttranscriptionally regulated proteins both globally (ie, in all AML samples) and also in patients with recurrent AML driver mutations. For example, samples with IDH1/2 mutations displayed elevated levels of the 2-oxoglutarate-dependent histone demethylases KDM4A/B/C, despite no changes in messenger RNA levels for these genes; we confirmed this finding in vitro. In samples with NPMc mutations, we identified several nuclear importins with posttranscriptionally increased protein abundance and showed that they interact with NPMc but not wild-type NPM1. We identified 2 cell surface proteins (CD180 and MRC1/CD206) expressed on AML blasts of many patients (but not healthy CD34+ stem/progenitor cells) that could represent novel targets for immunologic therapies and confirmed these targets via flow cytometry. Finally, we detected nearly 30 000 phosphosites in these samples; globally, AML samples were associated with the abnormal phosphorylation of specific residues in PTPN11, STAT3, AKT1, and PRKCD. FLT3-TKD samples were associated with increased phosphorylation of activating tyrosines on the cytoplasmic Src-family tyrosine kinases FGR and HCK and related signaling proteins. PML-RARA-initiated AML samples displayed a unique phosphorylation signature, and TP53-mutant samples showed abundant phosphorylation of serine-183 on TP53 itself. This publicly available database will serve as a foundation for further investigations of protein dysregulation in AML pathogenesis

    Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome

    Get PDF
    Somatic mutations in spliceosome genes are detectable in ∼50% of patients with myelodysplastic syndromes (MDS). We hypothesize that cells harbouring spliceosome gene mutations have increased sensitivity to pharmacological perturbation of the spliceosome. We focus on mutant U2AF1 and utilize sudemycin compounds that modulate pre-mRNA splicing. We find that haematopoietic cells expressing mutant U2AF1(S34F), including primary patient cells, have an increased sensitivity to in vitro sudemycin treatment relative to controls. In vivo sudemycin treatment of U2AF1(S34F) transgenic mice alters splicing and reverts haematopoietic progenitor cell expansion induced by mutant U2AF1 expression. The splicing effects of sudemycin and U2AF1(S34F) can be cumulative in cells exposed to both perturbations—drug and mutation—compared with cells exposed to either alone. These cumulative effects may result in downstream phenotypic consequences in sudemycin-treated mutant cells. Taken together, these data suggest a potential for treating haematological cancers harbouring U2AF1 mutations with pre-mRNA splicing modulators like sudemycins

    The polo-like kinase 1 (PLK1) inhibitor NMS-P937 is effective in a new model of disseminated primary CD56+ acute monoblastic leukaemia

    Get PDF
    CD56 is expressed in 15–20% of acute myeloid leukaemias (AML) and is associated with extramedullary diffusion, multidrug resistance and poor prognosis. We describe the establishment and characterisation of a novel disseminated model of AML (AML-NS8), generated by injection into mice of leukaemic blasts freshly isolated from a patient with an aggressive CD56+ monoblastic AML (M5a). The model reproduced typical manifestations of this leukaemia, including presence of extramedullary masses and central nervous system involvement, and the original phenotype, karyotype and genotype of leukaemic cells were retained in vivo. Recently Polo-Like Kinase 1 (PLK1) has emerged as a new candidate drug target in AML. We therefore tested our PLK1 inhibitor NMS-P937 in this model either in the engraftment or in the established disease settings. Both schedules showed good efficacy compared to standard therapies, with a significant increase in median survival time (MST) expecially in the established disease setting (MST = 28, 36, 62 days for vehicle, cytarabine and NMS-P937, respectively). Importantly, we could also demonstrate that NMS-P937 induced specific biomarker modulation in extramedullary tissues. This new in vivo model of CD56+ AML that recapitulates the human tumour lends support for the therapeutic use of PLK1 inhibitors in AML

    Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing

    Get PDF
    Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells

    The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri

    Get PDF
    Recent research has provided mechanistic insight into the important contributions of the gut microbiota to vertebrate biology, but questions remain about the evolutionary processes that have shaped this symbiosis. In the present study, we showed in experiments with gnotobiotic mice that the evolution of Lactobacillus reuteri with rodents resulted in the emergence of host specialization. To identify genomic events marking adaptations to the murine host, we compared the genome of the rodent isolate L. reuteri 100-23 with that of the human isolate L. reuteri F275, and we identified hundreds of genes that were specific to each strain. In order to differentiate true host-specific genome content from strain-level differences, comparative genome hybridizations were performed to query 57 L. reuteri strains originating from six different vertebrate hosts in combination with genome sequence comparisons of nine strains encompassing five phylogenetic lineages of the species. This approach revealed that rodent strains, although showing a high degree of genomic plasticity, possessed a specific genome inventory that was rare or absent in strains from other vertebrate hosts. The distinct genome content of L. reuteri lineages reflected the niche characteristics in the gastrointestinal tracts of their respective hosts, and inactivation of seven out of eight representative rodent-specific genes in L. reuteri 100-23 resulted in impaired ecological performance in the gut of mice. The comparative genomic analyses suggested fundamentally different trends of genome evolution in rodent and human L. reuteri populations, with the former possessing a large and adaptable pan-genome while the latter being subjected to a process of reductive evolution. In conclusion, this study provided experimental evidence and a molecular basis for the evolution of host specificity in a vertebrate gut symbiont, and it identified genomic events that have shaped this process

    Primaquine dose and the risk of haemolysis in patients with uncomplicated Plasmodium vivax malaria: a systematic review and individual patient data meta-analysis

    Get PDF
    Background: Primaquine radical cure is used to treat dormant liver-stage parasites and prevent relapsing Plasmodium vivax malaria but is limited by concerns of haemolysis. We undertook a systematic review and individual patient data meta-analysis to investigate the haematological safety of different primaquine regimens for P vivax radical cure. Methods: For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, if they included a treatment group with daily primaquine given over multiple days where primaquine was commenced within 3 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether–lumefantrine, artesunate–mefloquine, artesunate–amodiaquine, or dihydroartemisinin–piperaquine), and if they recorded haemoglobin or haematocrit concentrations on day 0. We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. The main outcome was haemoglobin reduction of more than 25% to a concentration of less than 7 g/dL by day 14. Haemoglobin concentration changes between day 0 and days 2–3 and between day 0 and days 5–7 were assessed by mixed-effects linear regression for patients with glucose-6-phosphate dehydrogenase (G6PD) activity of (1) 30% or higher and (2) between 30% and less than 70%. The study was registered with PROSPERO, CRD42019154470 and CRD42022303680. Findings: Of 226 identified studies, 18 studies with patient-level data from 5462 patients from 15 countries were included in the analysis. A haemoglobin reduction of more than 25% to a concentration of less than 7 g/dL occurred in one (0·1%) of 1208 patients treated without primaquine, none of 893 patients treated with a low daily dose of primaquine (<0·375 mg/kg per day), five (0·3%) of 1464 patients treated with an intermediate daily dose (0·375 mg/kg per day to <0·75 mg/kg per day), and six (0·5%) of 1269 patients treated with a high daily dose (≥0·75 mg/kg per day). The covariate-adjusted mean estimated haemoglobin changes at days 2–3 were –0·6 g/dL (95% CI –0·7 to –0·5), –0·7 g/dL (–0·8 to –0·5), –0·6 g/dL (–0·7 to –0·4), and –0·5 g/dL (–0·7 to –0·4), respectively. In 51 patients with G6PD activity between 30% and less than 70%, the adjusted mean haemoglobin concentration on days 2–3 decreased as G6PD activity decreased; two patients in this group who were treated with a high daily dose of primaquine had a reduction of more than 25% to a concentration of less than 7 g/dL. 17 of 18 included studies had a low or unclear risk of bias. Interpretation: Treatment of patients with G6PD activity of 30% or higher with 0·25–0·5 mg/kg per day primaquine regimens and patients with G6PD activity of 70% or higher with 0·25–1 mg/kg per day regimens were associated with similar risks of haemolysis to those in patients treated without primaquine, supporting the safe use of primaquine radical cure at these doses. Funding: Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture

    Clonal architecture of secondary acute myeloid leukemia

    Get PDF
    BACKGROUND: The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood. METHODS: We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations. RESULTS: Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene. CONCLUSIONS: Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.

    Patterns and functional implications of rare germline variants across 12 cancer types

    Get PDF
    Large-scale cancer sequencing data enable discovery of rare germline cancer susceptibility variants. Here we systematically analyse 4,034 cases from The Cancer Genome Atlas cancer cases representing 12 cancer types. We find that the frequency of rare germline truncations in 114 cancer-susceptibility-associated genes varies widely, from 4% (acute myeloid leukaemia (AML)) to 19% (ovarian cancer), with a notably high frequency of 11% in stomach cancer. Burden testing identifies 13 cancer genes with significant enrichment of rare truncations, some associated with specific cancers (for example, RAD51C, PALB2 and MSH6 in AML, stomach and endometrial cancers, respectively). Significant, tumour-specific loss of heterozygosity occurs in nine genes (ATM, BAP1, BRCA1/2, BRIP1, FANCM, PALB2 and RAD51C/D). Moreover, our homology-directed repair assay of 68 BRCA1 rare missense variants supports the utility of allelic enrichment analysis for characterizing variants of unknown significance. The scale of this analysis and the somatic-germline integration enable the detection of rare variants that may affect individual susceptibility to tumour development, a critical step toward precision medicine
    • …
    corecore