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Regular Article

MYELOID NEOPLASIA

Proteomic and phosphoproteomic landscapes of acute
myeloid leukemia
Michael H. Kramer,1 Qiang Zhang,2 Robert Sprung,2 Ryan B. Day,1 Petra Erdmann-Gilmore,2 Yang Li,1 Ziheng Xu,1 Nichole M. Helton,1

Daniel R. George,1 Yiling Mi,2 Peter Westervelt,1 Jacqueline E. Payton,3 Sai M. Ramakrishnan,1 Christopher A. Miller,1 Daniel C. Link,1

John F. DiPersio,1 Matthew J. Walter,1 R. Reid Townsend,2 and Timothy J. Ley1

1Division of Oncology, Department of Internal Medicine, 2Division of Endocrinology, Metabolism, and Lipid Research, and 3Department of Pathology and
Immunology, Washington University School of Medicine, St. Louis, MO

KEY PO INTS

� A deep-scale proteomic
and phosphoproteomic
database of AML was
produced and can be
explored interactively
(www.leylab.org/
amlproteome).

� Posttranscriptionally
regulated proteins
were identified globally
and associated with
specific AML-initiating
events.

We have developed a deep-scale proteome and phosphoproteome database from 44
representative acute myeloid leukemia (AML) patients from the LAML TCGA dataset and 6
healthy bone marrow–derived controls. After confirming data quality, we orthogonally
validated several previously undescribed features of AML revealed by the proteomic data.
We identified examples of posttranscriptionally regulated proteins both globally (ie, in all
AML samples) and also in patients with recurrent AML driver mutations. For example,
samples with IDH1/2 mutations displayed elevated levels of the 2-oxoglutarate–dependent
histone demethylases KDM4A/B/C, despite no changes in messenger RNA levels for these
genes; we confirmed this finding in vitro. In samples with NPMc mutations, we identified
several nuclear importins with posttranscriptionally increased protein abundance and
showed that they interact with NPMc but not wild-type NPM1. We identified 2 cell surface
proteins (CD180 and MRC1/CD206) expressed on AML blasts of many patients (but not
healthy CD341 stem/progenitor cells) that could represent novel targets for immunologic
therapies and confirmed these targets via flow cytometry. Finally, we detected nearly

30000 phosphosites in these samples; globally, AML samples were associated with the abnormal phosphorylation of
specific residues in PTPN11, STAT3, AKT1, and PRKCD. FLT3-TKD samples were associated with increased
phosphorylation of activating tyrosines on the cytoplasmic Src-family tyrosine kinases FGR and HCK and related
signaling proteins. PML-RARA–initiated AML samples displayed a unique phosphorylation signature, and TP53-mutant
samples showed abundant phosphorylation of serine-183 on TP53 itself. This publicly available database will serve as a
foundation for further investigations of protein dysregulation in AML pathogenesis.

Introduction
Proteins, despite being the primary effectors of cellular processes,
are often studied only indirectly through transcriptomic analysis.
However, it has been repeatedly shown that the relationship
between messenger RNA (mRNA) expression and protein expres-
sion is only approximate in many cancers.1-8 Furthermore, the
phosphoproteome provides a unique, global look at active signal-
ing pathways not visible with the transcriptome. In acute myeloid
leukemia (AML), the genome and transcriptome have been exten-
sively characterized9-11; limited studies of the proteome and
phosphoproteome have yielded promising insights.12-20 Here, we
present a deep-scale study of the proteomes and phosphopro-
teomes of 44 primary AML bone marrow samples representing a
wide range of AML across the spectrum of cytogenetic risk, com-
mon mutations, and driver fusions, validate several unique find-
ings revealed by these data, and provide an interactive platform
for exploration of these databases.

Methods
Sample collection and preparation
Bone marrow samples were collected at presentation from
adult patients with de novo AML on an Institutional Review
Board–approved banking protocol (#201011766) that provided
all 200 samples for the LAML TCGA study. From these 200, 70
still had $8 cryovials available for analysis. From these 70, we
chose 55 samples representing major cytogenetic and muta-
tional landscapes; 44 yielded adequate, high-quality material for
study. Bone marrow buffy coat cells were immediately cryopre-
served without further manipulation, as described previously.9

Cryovials were thawed in the presence of the cell-permeable,
irreversible serine protease inhibitor diisopropyl fluorophosphate
(DFP) to inactivate the myeloid serine proteases. Healthy control
bone marrow cells from 3 independent donors were depleted of
cells with terminal differentiation markers to enrich for progeni-
tors and precursors (“lineage-depleted,” using the Miltenyi
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Biotec reagent 130-092-211). Bone marrow cells from 3 different
healthy donors were used to enrich for CD341 stem/progenitor
cells (“CD34-selected,” using the Miltenyi Biotec reagent 130-
100-453) Both lineage depletion and CD34 selection were
performed using an autoMACS separator per manufacturer
instructions.

Proteomic and phosphoproteomic methods
An overview of the workflow is provided in the visual abstract.
Peptides and phosphopeptides for deep-scale proteomic analy-
sis were prepared as previously described.21 Peptides and phos-
phopeptides from individual samples were labeled with tandem
mass tag (TMT) reagents (TMT-11; supplemental Table 1). Before
labeling, an aliquot was removed for label-free quantification.
Labeled peptides and phosphopeptides were combined into
TMT-11 plexes (9 samples plus 2 reference pools). Plexes
were fractionated offline using basic reversed-phase high-
performance liquid chromatography; 24 concatenated frac-
tions from each plex were prepared as previously described.21

An aliquot (5%) of each concatenated fraction and fraction A
was analyzed using ultraperformance liquid chromatography
Orbitrap mass spectrometry. The remainder was combined
into 12 fractions for phosphopeptide enrichment.

Labeled peptides were analyzed using high-resolution liquid
chromatography-tandem mass spectrometry. Unlabeled, unfrac-
tionated peptides from individual samples were analyzed using
trapped ion mobility time-of-flight mass spectrometry22 using
ultraperformance liquid chromatography timsTOF Pro (Bruker
Daltonics). The mass spectrometer was operated in parallel
accumulation–serial fragmentation mode.22 The chromato-
graphic instrument parameters and setup are in supplemental
Methods (available on the Blood Web site). Protein and phos-
phopeptide identification and quantification algorithms are in
supplemental Methods.

Unsupervised clustering
Unsupervised clustering of protein/phosphosite abundance was
performed using the unweighted pair group method with arith-
metic mean.23 Similarity scores between samples were Pearson
correlations across all proteins/phosphosites detected in all
samples.

K562 nucleofection
K562 cells were nucleofected using the Lonza 4D Nucleofector
X-unit as per manufacturer instructions using Amaxa Kit (Catalog
#V4XC-2024). pcDNA3-Flag-IDH1 and pcDNA3-Flag-IDH1-R132H
were gifts from Yue Xiong (Addgene #62906 and #62907).24 Cells
were harvested 48 hours after nucleofection.

Western blotting
Western blots were performed using the Jess western blotting
system and total protein normalization module and analyzed
using Compass software (ProteinSimple). Antibodies are in sup-
plemental Methods.

TurboID and immunofluorescence
TurboID was performed as described previously,25 with details
in supplemental Methods.

Results
A deep-scale proteome recapitulates many
well-recognized features of AML
Using the LAML TCGA sample set,9 we obtained protein
extracts from 44 fully characterized AML bone marrow samples,
representing a wide range of AML subtypes across the spectrum
of cytogenetic risk, common mutations, and driver fusions
(Figure 1A; supplemental Table 2).

Because AML cells contain abundant, highly active serine pro-
teases (ELANE, CTSG, PRTN3, and neutrophil serine protease 4/
PRSS57), sample preparation was optimized to avoid proteolysis
(which could affect the quantitation of tryptic peptides if they
were cleaved by another proteinase). Cryovials of patient bone
marrow samples collected at presentation were thawed in the
presence of the cell-permeable, covalent serine-protease inhibi-
tor DFP and processed for mass spectrometry with a standard
cocktail of protease inhibitors. First, the deep-scale and phos-
phoproteomic workflow was validated against standards from a
previously published workflow21 (supplemental Figure 1). Then,
both LFQ and TMT deep-scale proteomics were performed on
44 patient samples, as well as 3 lineage-depleted bone marrow
samples from healthy adult donors. LFQ was also performed on
3 CD34-selected bone marrow samples from healthy adult
donors.

Although the TMT and LFQ mass spectrometry platforms both
measure protein abundance, they were used in tandem for this
study because of their complementary strengths. TMT has
higher sensitivity than LFQ; we detected 10651 proteins in the
TMT dataset and 6845 proteins in the LFQ dataset (supplemen-
tal Tables 3 and 4). TMT more accurately defines the relative
abundance of an individual protein across a set of patient sam-
ples due to the use of simultaneous loading of multiple samples
and comparison with a common reference pool comprised of all
samples; however, only relative (ie, compared with other sam-
ples), not absolute, protein abundance measurements are
obtained. One major advantage of LFQ is its ability to deter-
mine the absolute abundance of proteins, allowing for direct
comparisons of abundance among different proteins. LFQ also
has a wider dynamic range, allowing for the detection of large
differences among samples, and it requires less total protein.
For example, we were able to obtain LFQ measurements from
highly enriched CD341 healthy control bone marrows; this was
not possible using TMT due to the rarity of these cells in healthy
bone marrow samples (,1% of cells). In this study, we have pro-
vided information from both datasets whenever possible, which
provides orthogonal support for many biological conclusions.

Importantly, because of the use of the cell-permeable DFP pro-
teinase inhibitor, we did not find evidence for protein degrada-
tion caused by the endogenous myeloid serine proteases, with
only a modest relationship between ELANE abundance and the
detection of proteins in the TMT dataset (R2 5 20.18); in each
sample, between 4328 and 4664 unique proteins were detected
at above-average abundance (Figure 1B). A slightly stronger
relationship was seen in the LFQ dataset between ELANE abun-
dance and total proteins detected (Figure 1C, R2 5 20.46), with
healthy lineage-depleted marrows containing the most ELANE;
all samples had 2347 to 5265 detected proteins. Similar trends
were seen for CTSG, PRTN3, and neutrophil serine protease 4
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(supplemental Figure 2). Using previously measured mRNA
abundance for these samples from the TCGA study, we found a
median Spearman correlation between protein and RNA abun-
dance of 0.31 for TMT data (Figure 1D) and 0.23 for LFQ data
(supplemental Figure 3A), similar to previously published large-
scale proteomics studies,7 which have also demonstrated that
RNA serves as only an approximation of protein abundance.
Reflecting the quality of these data, the correlation between
protein abundance measurements across platforms was higher,
with a median Spearman correlation of 0.59 (Figure 1E; supple-
mental Table 5), consistent with other recent large-scale proteo-
mics studies.7

One thousand, four hundred and seventy-four proteins showed
anticorrelation between protein and mRNA abundance (Spear-
man correlation , 0 across AML samples using TMT protein
abundance). These proteins included TP53, RAD51B, RAD52,
NRAS, HRAS, EGFR, and ERBB3/HER3. In pathway analyses
using the Kyoto Encyclopedia of Genes and Genomes,26 these
1474 anticorrelated proteins were significantly enriched for the
spliceosome (q , 10221, including SRSF2, SF3B1, and U2AF1),
the ribosome (q , 1024), the oxidative phosphorylation pathway
(q , 1025), and RNA polymerase (q , 1023). Conversely, 1198
proteins showed a Spearman correlation between protein and
mRNA abundance of .0.7. These included CEBPA, GATA1,
GATA2, RB1, JAK2, FGR, HCK, SYK, PRKCA/B/C, and 108 of
the 247 detected cell differentiation markers27 (q , 10215,
including CD34, KIT, and FLT3).

We then examined the ability of these data to recapitulate
known features of AML. First, we examined the correlation with
clinical flow cytometry of common AML surface proteins
(Figure 1F [TMT]; supplemental Figure 3B [LFQ]); we found that
protein abundance measurements were significantly correlated
with the fraction of cells in each sample bearing cell surface pro-
teins CD34, CD33, CD13, CD117, and CD56. Next, we looked
at proteins known to be overexpressed in AML samples driven
by common fusion events (PML-RARA, CBFB-MYH11, and
RUNX1-RUNX1T1).9 For each subtype, overexpression of the
unique, expected proteins was detected in relevant samples but
not in other AMLs or healthy controls (Figure 1G [TMT]; supple-
mental Figure 3C [LFQ]). We also found the mean quantitative
ratio of b-globin (HBB) to a-globin (HBA2) was �1.2, with mini-
mal variance, consistent with the nearly equal abundance of
these proteins in hemoglobin A in red blood cell precursors in
bone marrow28 (supplemental Figure 3D, using LFQ). We next
evaluated sex-based differences in AML patient samples, looking

for differential protein expression between the 23 female and 21
male patients; 4 significantly different proteins (DDX3Y, EIF1AY,
RPS4Y1, and ZFY) were identified in the TMT data, all of which
are Y-linked proteins widely expressed in males (supplemental
Figure 3E). Two of these (DDX3Y and RPS4Y1) were also
detected in the LFQ data and were present only in male patients
(DDX3Y was detected at a low level in 1 of 23 female patients).
Taken together, these analyses confirm the quality and reproduc-
ibility of the proteomic dataset, which reflects many relevant fea-
tures of AML biology.

Inclusion of healthy control samples
As noted above, the LFQ dataset includes both lineage-
depleted and CD34-selected healthy bone marrow control sam-
ples, whereas the TMT dataset includes only lineage-depleted
healthy bone marrow controls (due to the rarity of CD341 cells
in healthy bone marrow, we could not purify enough protein
from single donors for TMT determinations). Lineage depletion
removes the most mature hematopoietic cells, leaving a hetero-
geneous mixture of progenitors and precursors, whereas CD34
selection enriches directly for stem and progenitor cells. Both of
these populations represent important comparators for the AML
samples because AML originates from hematopoietic stem/
progenitor populations.

Global analysis of the AML proteomic landscape
We next performed unsupervised hierarchical clustering of sam-
ples based on protein abundance measured on the TMT plat-
form. We found that samples organized primarily by important
clinical covariates, including cytogenetics and/or common muta-
tions, suggesting that these supervised proteomic signatures
(Figure 2A). Clustering with LFQ data recapitulated some (but
not all) of these features (supplemental Figure 4), emphasizing
the importance of the deep-scale TMT dataset, which more
accurately captures interpatient, relative protein abundance. The
first 2 principal components separated most AML patients from
healthy donor samples in both TMT and LFQ datasets (supple-
mental Figures 5A-B), whereas higher-dimensional analysis using
t-Distributed Stochastic Neighbor Embedding29 recapitulated
the groups seen using hierarchical clustering, highlighting their
robustness across algorithms (supplemental Figures 5C-D and
6). Clustering without lineage-associated proteins (as previously
published30) did not markedly change the results (supplemental
Figure 7).

Comparing global protein vs RNA expression in all 44 AML sam-
ples using the LFQ data (which allows measurement of absolute

Figure 1. Characteristics of the AML patients in the study and data quality. (A) Relevant clinical parameters and common genetic findings in TCGA patients
selected for this study. (B) Number of proteins detected at above-average abundance (greater than reference pool) for each patient or healthy donor sample compared
with the normalized protein abundance of the neutrophil elastase (ELANE) serine protease in each sample (defined by TMT). Similar distributions were noted for the
other abundant myeloid serine proteases (cathepsin G [CTSG] and proteinase 3 [PRTN3]). Note that high levels of ELANE are not correlated with reduced numbers of
detected proteins, suggesting that tryptic peptides are not being cleaved by endogenous proteases during sample preparation. (C) Number of proteins detected for
each sample compared with the normalized protein abundance of ELANE using label-free quantification (LFQ). (D-E) Distribution of gene-wise Spearman correlation
between proteomic (TMT) and bulk RNA sequencing data (D) and between LFQ and TMT platforms (E). For both panels D and E, only genes quantifiable by both
technologies in at least 20% of AML samples were included in the analysis. Dashed red lines represent median values. (F) Measured protein abundance (TMT) for each
of the identified cell surface proteins in patients grouped by the percentage of cells from their presentation marrow sample that displayed the same respective marker
using clinical flow cytometry. Protein abundance is calculated based on summed reporter ion intensity, which was normalized and median-centered across TMT plexes
to a reference sample. Each protein expression value is then scaled to have a maximum value across all measured samples of 1, and a minimum value of 0, for this
display. *P , .05 by 1-sided Mann-Whitney U test between groups. (G) Measured protein abundance (TMT) for each of 4 proteins known to be expressed in only
1 AML subtype. Shown are 3 AMLs with PML-RARA fusions, 4 with CBFB-MYH11 fusions, and 2 with RUNX1-RUNX1T1 fusions; 11 other representative AML samples
and 3 healthy adult donor bone marrow samples are shown. HGF and RARA are overexpressed only in PML-RARA–initiated AML, MYH11 is overexpressed only in
CBFB-MYH11 initiated AML, and RUNX1T1 is overexpressed only in RUNX-RUNX1T1 AML. ITD, internal tandem duplication; NS, not significant.
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protein abundance), we saw numerous examples of posttran-
scriptional regulation, where RNA abundance did not predict
protein abundance (eg, high RNA and low protein or vice versa,

Figure 2B). We noted that several histone proteins, STMN2, the
AKT coactivator/oncogene TCL1A, and the protein tyrosine
kinase receptor KDR, all displayed markedly increased protein
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Figure 2. Protein expression levels are often correlated with clinical features and reveal evidence for posttranscriptional regulation. (A) Unsupervised clustering
of proteomic profiles, revealing distinct clusters of samples, many of which correlate with known molecular covariates, including cytogenetic alterations, FAB subgroups,
and recurrent mutations. The heatmap shows a Pearson correlation of protein expression levels among all patients using TMT proteomic measurements. Clustering was
based on the unweighted pair group method with arithmetic mean algorithm, with similarity scores as shown in the heatmap. Brackets on the side of the heatmap indi-
cate subgroups with shared clinical or molecular features; the value in parentheses indicates the mean Pearson correlation among members of that subgroup. (B) Mean
log10 expression values of protein and RNA abundance for 7916 proteins measured in the bone marrow samples of 44 de novo, primary AML patients at time of diag-
nosis. RNA expression was quantified using transcripts per million from RNA sequencing after log10 transformation. Protein expression was measured using LFQ tan-
dem mass spectrometry with normalized precursor ion intensities representing protein abundance after log10 transformation. The red line shows a line of best fit using
linear regression with no intercept. Proteins displaying evidence for posttranscriptional regulation (high protein expression with low RNA expression or vice versa) are
boxed in green and include the labeled histones H1-3, H1-4, H1-5, H2AC21, H3C1, and H3C15, as well as STMN2, the AKT co-activator/oncogene TCL1A, the protein
tyrosine kinase receptor KDR, and the key tumor suppressor TP53. High protein, low RNA green box includes proteins with at least half of the maximal protein expres-
sion detected (log10 scale) and at most 15% of the maximal RNA expression. High RNA, low protein green box includes proteins with ,25% of the maximal protein
expression and at least median RNA expression. All proteins in the blue boxes are mitochondrially (MT) encoded and have lower-than-expected protein expression val-
ues as predicted by RNA expression. LYZ and MPO are known highly abundant proteins in myeloid cells. mut, mutant.
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abundance out of proportion to RNA expression. Conversely,
TP53 protein was undetectable in LFQ and minimally detectable
in TMT data, despite significant mRNA expression equivalent to
most detectable proteins (previous in-depth analysis of TP53 pro-
tein abundance in AML used reverse-phase protein arrays, which
may be more sensitive31). Still, the small amount of TP53 detected
suggests that posttranscriptional mechanisms may influence TP53
protein abundance. Other mass spectrometry–based proteomics
studies have detected TP53 in only some tumor types, suggesting
this may reflect differences in tumor biology; a recent compen-
dium of 2002 human cancers of 14 different types32 detected
TP53 in 1142 of 2002 patient samples (705 of 805 TP53-mutant
patients), and a recent study of intrahepatic cholangiocarcinoma33

(with 39 of 262 patients harboring a TP53 mutation) did not detect
TP53 among 10529 detected proteins. Further, multiple families
of proteins were abundant in AML samples compared with
healthy control marrow, without corresponding changes in mRNA
abundance; examples include the H/ACA box small nucleolar
ribonucleoprotein core complex (which is involved in both telo-
mere maintenance and pseudouridylation of mRNA34) as well as
the THO complex (which is involved in the formation and export
of messenger ribonucleoparticles35) (supplemental Figure 8).

IDH1/2 mutations are associated with increased
abundance of KDM4A/B/C histone demethylases
Given the protein abundance signature for IDH mutations in
unsupervised clustering, we looked for differentially abundant
proteins in patients with IDH1 (n 5 5) or IDH2 (n 5 4) mutations
compared with other AML samples (n 5 35). We found 17 differ-
entially abundant proteins after multiple-hypothesis correction (13
with increased abundance in IDH-mutant patients) and noted that
the 2-oxoglutarate–dependent H3K9/27/36 histone demethylases
KDM4A, KDM4B, and KDM4C36 were all affected similarly
(Figure 3A). Given the known dysregulation of 2-oxoglutarate
metabolism caused by IDH1/2 mutations,37 we looked for evi-
dence of dysregulation for all 2-oxoglutarate–dependent dioxyge-
nases; there was not a general effect (Figure 3A). The trend of
increased abundance generally held for both IDH1- and IDH2-
mutant samples in the TMT dataset, although the effect was
strongest for IDH1 (Figure 3B). Although detection of these pro-
teins was limited in the less sensitive LFQ dataset, a similar trend
was seen, with KDM4B abundance significantly higher (P , .05
by Mann-Whitney U test) in IDH1- and IDH2-mutant samples than
IDH1/2 wild-type (wt) samples (KDM4A was detected in LFQ in
only 3 of 44 samples, 2 of which were IDH1/2-mutant samples;
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KDM4C was not detected using LFQ). Strikingly, no significant
change was seen in mRNA abundance, suggesting that the pro-
tein abundance of KDM4A/B/C is controlled at a posttranscrip-
tional level (Figure 3C).

To determine whether the IDH1 mutation alone was sufficient to
cause this effect, we transfected the erythroleukemia cell line
K562 with plasmids containing either an empty vector, a wt
IDH1-FLAG construct, or an IDH1R132H-FLAG construct re-
presenting the most common IDH1 mutation in AML. We
found that transient expression of the IDH1R132H protein (but
not wt IDH1) for 48 hours caused increased abundance of
KDM4A, KDM4B, and KDM4C as detected by western blotting
(Figure 3D). Taken together, these results suggest that the
IDH1/2 mutations affect the protein abundance of the onco-
genic KDM4 family36 through posttranscriptional mechanisms.

Mutant NPMc protein is associated with
increased abundance of (and physical interaction
with) several nuclear importins
We next identified differential protein abundance in samples
with mutant NPM1. The NPMc mutation was present in 8 cases
in this dataset and leads to aberrant cytoplasmic mislocalization
of NPM1.38 We found 11 differentially abundant proteins
between NPMc-mutant and NPM1wt samples after multiple-
hypothesis testing correction; 8 showed increased abundance in
NPMc-mutant samples. Of these, 2 belonged to the nuclear
importin family:39 KPNA4 and KPNB1 (Figure 4A). Across the
entire family of nuclear importins (KPNA1-6 and KPNB1), we
noticed a general trend of increased protein abundance in
NPMc-mutant AML and an even more pronounced increase
when compared with healthy, lineage-depleted bone marrow
(Figure 4B). A similar (but not statistically significant) trend was
seen in the LFQ dataset. No similar trend was seen in mRNA,
where transcript abundance was similar between NPMc AML,
NPM1wt AML, and healthy CD341 cells; for KPNA2 and KPNA4,
there was actually decreased mRNA abundance in the AML
samples compared with healthy controls (Figure 4C).

To identify a potential mechanism for this posttranscriptional
regulation, we performed a screen for physical interactions spe-
cific for NPMc in primary murine hematopoietic cells using the
TurboID system for proximity tagging of tightly associated pro-
teins with biotin.25 We stably transduced primary mouse hema-
topoietic stem/progenitor cells with viral constructs expressing

the TurboID cDNA alone or fused in frame to either the N or C
terminus of wt NPM1 or mutant NPMc. An internal ribosome
entry site–green fluorescent protein cassette was downstream
from the expressed cDNA in all vectors. We confirmed that the
constructs displayed nucleolar localization for wt NPM1 fusions
vs nuclear and cytoplasmic localization for NPMc fusions (supple-
mental Figure 9). After 4 days, the transduced, GFP1 cells were
cultured with biotin for 4 hours. Biotin-labeled proteins were
enriched with streptavidin bead pulldowns, and tryptic peptides
released from the beads were identified by mass spectrometry.
This system showed reproducible results across technical repli-
cates and across both N- and C-terminal fusions; the nuclear
importins KPNA3 and KPNA4 were among the top 30 biotiny-
lated proteins from NPMc compared with NPM1wt TurboID
fusions, indicating physical proximity with mutant NPMc (Figure
4D; supplemental Table 6). Focusing specifically on the nuclear
importins, we found that mutant NPMc TurboID constructs
showed significantly increased interactions with KPNA1, KPNA3,
KPNA4, KPNA6, and KPNB1 compared with the wt NPM1 Tur-
boID vectors (Figure 4E). The total abundance of these proteins
was minimally altered after this brief overexpression (Figure 4F),
suggesting that increased labeling was due to physical proxim-
ity, not increased protein abundance.

Analysis of protein abundance signatures for
recurrently mutated AML-associated genes
We also defined differentially expressed proteins for all samples
with recurrently mutated genes (n $ 3) in this dataset and identi-
fied many additional examples of posttranscriptional regulation
associated with AML-specific mutations (supplemental Figures
10-14; see leylab.org/amlproteome for an interactive interface).

CD180 and MRC1/CD206 are expressed on
AML cells but not normal CD34 cells
Because AML-specific proteins on the cell surface could serve as
targets for immunologic therapies (eg, antibody-drug conju-
gates, bispecific T-cell engagers, and/or chimeric antigen recep-
tor T cells), we searched the proteomic database for evidence of
these proteins. We first compiled a permissive list of 4092 prob-
able surface proteins by combining lists from the Human Protein
Atlas40 and the in silico human surfaceome.41 We identified 27
proteins from the list with a median protein expression differ-
ence between AML and healthy lineage-depleted bone marrow
of .2 standard deviations above the median expression differ-
ence in the TMT dataset. This list included the folate receptor b

Figure 4. AML samples with the NPMc mutation are associated with increased abundance of several nuclear importins, and NPMc interacts directly with
several family members. (A) Volcano plot showing protein abundance in NPM1-mutated vs wt AML samples. P values are calculated using the t test and corrected for
multiple-hypothesis testing with Benjamini-Hochberg method. Dashed red line shows P 5 .05. (B-C) Normalized abundance of the nuclear importins organized by
NPM1 mutation status in TMT data (B) and bulk RNA sequencing data (C). *P , .05 by t test between groups. (D) TurboID vectors were created with no fused
complementary DNA (cDNA) (“TurboID only”) or fused at either the N or C terminus of wt NPM1 or mutant NPMc (T-NPM1 and T-NPMc indicate N-terminal fusions,
whereas NPM1-T and NPMc-T indicate C-terminal fusions). Each vector was stably transduced into primary mouse hematopoietic stem/progenitor cells and, after
4 days, cultured in the presence of biotin for 4 hours. Biotin-labeled proteins were then enriched with streptavidin beads and stringently washed, and tryptic peptides
were released from the beads and identified by mass spectrometry. Z-scores are calculated based on spectral counts across 10 TurboID-only biological replicates and
3 biological replicates for each of the other indicated vectors. The 30 interacting proteins with the greatest fold change for the NPM1-TurboID constructs are shown; all
display significant differences (t test, multiple-hypothesis correction by Benjamini-Hochberg method with P , .05) from samples expressing TurboID only and
NPMc-TurboID. Similarly, 30 proteins with the greatest fold change were selected for the NPMc-TurboID vector, and all displayed significant differences from both wt
NPM1 and TurboID only. KPNA3 and KPNA4, 2 members of the nuclear importin family, are highlighted in green. (E) Spectral counts detected in the TurboID
experiments for each of the displayed nuclear importins are normalized for display between 0 and 1. *P , .05 by t test between groups. N- and C-terminal TurboID
constructs are analyzed together for the NPM1 and NPMc vectors. (F) Western blotting of protein abundance for the indicated proteins in cell lysates created from the
stably transduced mouse bone marrow cells prior to streptavidin pulldown. Normalized total protein for each lane is shown as a loading control as determined on the
Jess western blotting system. In this short-term expression system, the abundance of the nuclear importins is not increased, suggesting that the detection of
interactions with NPMc is not due to an increase in total importin protein abundance. One representative example from 3 biologic replicates is shown. mut, mutant;
NS, not significant.
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(FOLR2), previously identified as an AML-specific target for chi-
meric antigen receptor T cells.42 We further filtered for proteins
with minimal or no expression on healthy CD341 cells in the
LFQ dataset and that did not show significant expression in
other tissue types in the public Human Protein Atlas database.43

This analysis nominated CD180 and MRC1/CD206 as candidate
proteins.

CD180 is a Toll-like receptor expressed primarily on B cells and
involved in activation signaling44; it has been identified as a pos-
sible target for treatment of B-cell non-Hodgkin lymphoma.45

We found that CD180 is expressed highly in many AML samples
but not in healthy CD341 enriched stem/progenitor cells or in
lineage-depleted healthy bone marrow (Figure 5A; supplemen-
tal Figure 15A). Corresponding RNA sequencing shows that
CD180 is primarily expressed in some AML samples and CD191

B cells and, to a lesser extent, in monocytes/macrophages, consis-
tent with previous reports46 (Figure 5B; supplemental Figure 15B).
Similarly, the Human Protein Atlas single-cell transcriptomics data-
base43 showed expression primarily in B cells and macrophages/
monocytes, with minimal expression elsewhere. Furthermore, flow
cytometry of selected patient samples and healthy bone marrow
confirmed expression of CD180 on AML blasts, and CD191

B cells, with no detectable expression on healthy CD341 stem/
progenitor cells (Figure 5C-E).

MRC1/CD206 is a mannose receptor primarily expressed on the
surface of M2 immunosuppressive macrophages47 and tumor-
associated macrophages (TAMs), which are thought to promote
an immunosuppressive and pro-tumorigenic microenviron-
ment.48,49 We found that MRC1/CD206 protein is highly
expressed in a subset of AML samples, but not in CD341
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Figure 5. CD180 and MRC1 are highly expressed on AML blasts from some patients but not on CD34 stem/progenitor cells. (A) Normalized protein abundance
of CD180 in LFQ data for AML patient bone marrow samples, lineage-depleted bone marrow from healthy donors (Healthy Lin2), and CD34-selected bone marrow
from healthy donors (Healthy CD341). (B) Normalized RNA abundance of CD180 in AML patient samples and the indicated cell types purified from healthy donor bone
marrow samples. In both panels A and B, the letters C, D, and E indicate patient samples selected for flow cytometry as shown in the indicated panels. (C-E) Flow
cytometry results with staining for CD180 on both AML cells in the blast gate and CD191 B cells (cells that normally express CD180, as a positive control) in the
indicated patient samples. Staining of CD341 cells from healthy donor marrow is also shown. (F) Normalized protein abundance of MRC1 in LFQ data for AML patient
bone marrow samples, lineage-depleted bone marrow cells from healthy donors (Healthy Lin2), and CD34-enriched bone marrow cells from healthy donors (Healthy
CD341). (G) Normalized RNA abundance of MRC1 in AML patient samples, and the indicated cell types from healthy donor bone marrow, are shown. In both panels
F and G, the letters H, I, and J indicate patient samples selected for flow cytometry and are shown in the indicated panels. (H-J) Flow cytometry results with staining
for MRC on AML cells in the blast gate in the indicated patient samples. Staining of CD341 cells and monocytes (cells that normally express MRC1, as a positive
control) is shown from healthy donor marrow.
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healthy bone marrow cells (Figure 5F; supplemental Figure
15C). RNA expression corroborates high levels of expression in
many AML samples with lower expression in monocytes, and
minimal to no expression in healthy CD341 cells (Figure 5G;
supplemental Figure 15D). The Human Protein Atlas single-cell
transcriptomics database43 showed expression primarily on mac-
rophages and hepatic stellate cells. Flow cytometry of selected
patient samples confirmed expression of MRC1/CD206 was
indeed on high on AML blasts and healthy monocytes, but not
on healthy CD341 cells (Figure 5H-J). Taken together, these
data suggest that CD180 and MRC1/CD206 may be candidates
for targeting AML, with potentially tolerable “on-target, off-
cancer” toxicity.

The phosphoproteomic landscape of AML cells
Using a previously validated protocol21 for deep-scale phospho-
proteomics, we measured global phosphopeptides in the 44
AML samples and 3 lineage-depleted healthy bone marrow con-
trols. We detected 29201 unique phosphosites on 5407 unique
proteins in the dataset. Unsupervised clustering of patients
based on phosphoproteomic profiles revealed clear segregation
between AML and healthy controls, as well as groups corre-
sponding to activating FLT3 mutations, PML-RARA fusions

(acute promyelocytic leukemia [APL]), and CBFB-MYH11 fusions
(Figure 6; supplemental Table 7; supplemental Figure 16).

We next identified specific phosphosites driving these signatures.
In a global analysis of AML samples vs healthy control samples,
we detected significantly increased tyrosine phosphorylation of
4 sites (PTPN11 tyrosine-542, protein kinase C d (PRKCD) tyrosine-
313, PRPF4B tyrosine-849, and PDHA1 tyrosine-242; Figure 7A.
Note that immobilized metal affinity chromatography enriches
all phosphorylated peptides and is not tyrosine specific). For
PTPN11/SHP-2, a recurrently mutated gene in AML50 (Figure 7B),
the increased phosphorylation of the activating site tyrosine-
54251 is not significantly driven by PTPN11 mutations; in this
dataset, only 2 patients had PTPN11 mutations, and neither dis-
played aberrant PTPN11 tyrosine-542 phosphorylation. The AML
samples also displayed increased phosphorylation of the activat-
ing site tyrosine-313 on PRKCD.52 STAT3 tyrosine-705, a site
essential for its transcriptional activity53 and previously shown to
be phosphorylated in many AML patients,54 was also found to
be phosphorylated in AML samples and was undetectable in
healthy bone marrow samples (Figure 7B). None of PTPN11,
PRKCD, or STAT3 proteins had increased abundance in AML sam-
ples; in fact, both PTPN11 and STAT3 had significantly decreased
abundance in AML compared with healthy, lineage-depleted

F

G

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
Li

n–
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

Li
n–

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
Li

n–
C

D
34

+
C

D
34

+
C

D
34

+
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

H

J
I

0.0

0.5

1.0
M

RC
1 

pr
ot

ei
n 

ab
un

da
nc

e
AML

Healthy CD34+

Healthy Lin–
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

A
M

L
A

M
L

M
o

no
A

M
L

A
M

L
A

M
L

M
o

no
A

M
L

A
M

L
C

D
34

+
A

M
L

C
D

19
+

A
M

L
A

M
L

A
M

L
A

M
L

C
D

34
+

N
eu

A
M

L
C

D
34

+
A

M
L

C
D

3+ P
ro

A
M

L
A

M
L

A
M

L
C

D
3+

A
M

L
C

D
3+

A
M

L
A

M
L

A
M

L
P

ro
A

M
L

C
D

19
+

A
M

L
A

M
L

N
eu

C
D

19
+

A
M

L
N

eu
A

M
L

A
M

L
A

M
L

P
ro

A
M

L

H

J

I

0.0

0.5

1.0

M
RC

1 
RN

A 
ab

un
da

nc
e AML

CD19+

CD3+

CD34+

Mono

Neu

Pro

J

MRC1 fIuorescence
0 103 105

Un
it 

ar
ea

0.020

0.010

0

H

MRC1 fIuorescence

Un
it 

ar
ea

0.010

0
0 103 105

Blast gate

Monocytes

CD34+

I

Un
it 

ar
ea 0.008

0.004

0

MRC1 fIuorescence
0 103

Figure 5 (continued)

1542 blood® 29 SEPTEMBER 2022 | VOLUME 140, NUMBER 13 KRAMER et al

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/140/13/1533/1922872/bloodbld2022016033.pdf by guest on 24 M

arch 2023



bone marrow cells (Figure 7B). Taken together, these results con-
firm the association between increased STAT3 signaling and AML,
strengthen evidence for PRKCD activation,55 and suggest wide-
spread signaling via PTPN11 in AML cells.

We next evaluated all phosphorylation sites and found 970 with
significant differences (P , .05, Benjamini-Hochberg method56

for multiple-hypothesis correction) between AML samples and
healthy controls (Figure 7C). These included 2 activating sites
(serine-12457 and serine-12958) on the oncogenic serine/threo-
nine protein kinase AKT1 and multiple sites on DNMT3B (1 of
the 2 de novo methyltransferases expressed in AML cells; the
other is DNMT3A, one of the most frequently mutated genes in
AML9-11,59; Figure 7D), among others.

We also looked for evidence of recurrent phosphorylation pat-
terns in AML. Using unsupervised clustering, we found 5 groups
containing at least 10 phosphoproteins and where the average
Pearson correlation among all phosphosites in the group
across all samples was .0.8. One group was enriched for

chromatin-organization proteins, 1 for histone modifiers, 2 for
RNA processing/splicing proteins, and 1 for cytoskeletal proteins.

FLT3-TKD mutations are associated with
activation of the SRC-family tyrosine kinases FGR
and HCK
As expected, we observed a strong phospho-signature associated
with activating tyrosine kinase domain (TKD) mutations in the
receptor tyrosine kinase FLT3, as evidenced by the grouping of
FLT3-TKD samples in unsupervised clustering (Figure 6). We
sought to characterize downstream pathways of FLT3-TKD signal-
ing by identifying phosphorylated tyrosines in samples with the
common D835 mutation (6 of 44 patients in this dataset). Nine
tyrosines had increased phosphorylation in FLT3-TKD samples
compared with FLT3 wt samples (Figure 7E). These include the
activating site tyrosine-411 on HCK,60,61 and tyrosine-34 on FGR,
both of which are SRC-family cytoplasmic tyrosine kinases62

(Figure 7F). We also identified the activating site tyrosine-313
on PRKCD,52 the activating site tyrosine-56463 on the
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tyrosine-protein phosphatase PTPN6 (which plays a known role in
deactivation of Src signaling),64 the highly conserved tyrosine-844
site on the r/Rac guanine nucleotide exchange factor VAV1
(downstream from HCK and FGR in neutrophil activation),65,66

and the tyrosine-401 site on G6PD (which increases activity when
phosphorylated by SRC-family kinases).67 Finally, we identified
increased phosphorylation of tyrosine-260 on ATP1A1, which reg-
ulates SRC-family kinase activity.68 Taken together, these data
suggest that the SRC-family kinases HCK and FGR, and the
downstream kinase PRKCD, are activated in AML cells containing
FLT3-TKD mutations. Many of these phosphosites demonstrated
similar trends in the 4 samples containing FLT3-ITD mutations in
dominant subclones.

AMLs initiated by PML-RARA display a
phosphoproteomic signature
In APL samples initiated by PML-RARA, we identified 490 phos-
phosites that were significantly different from other AML sam-
ples (Figure 7G). These included the threonine-172 site on the
serine/threonine kinase STK26/MST4, just adjacent to the activa-
tion loop,69 and the critical activating site serine-63 on the onco-
genic transcription factor JUN70; no significant increase in STK26
protein levels or JUN RNA (total JUN protein not detected) was
detected in APL samples (Figure 7H).

TP53-mutated AML displays abundant
phosphorylation of TP53 and activated FYN
In TP53-mutated AML samples, there were 344 phosphosites that
were significantly different from other AMLs (Figure 7I). These
included phosphorylation of the serine-183 site on TP53 itself
(which marks TP53 for degradation71) and the activating site
tyrosine-420 on the FYN tyrosine kinase72; no significant changes
in TP53 or FYN protein levels were detected (Figure 7J).

Discussion
This study presents a deep-scale proteomic and phosphopro-
teomic database of AML samples as a resource for the AML
community. Several vignettes highlight the value and novelty of
this dataset, including the identification of posttranscriptionally
regulated protein abundance, the identification of cell surface

markers for immunologic targeting of AML, and phosphorylation
changes in signaling pathways of relevance for AML pathogene-
sis. An intuitive, interactive database is available at leylab.org/
amlproteome.

This study adds to the strong body of evidence of that mRNA
and protein abundance in AML cells are relatively limited
(median Spearman correlation only 0.31). We found considerable
evidence of posttranscriptional regulation of protein abundance
in AML, consistent with that described for other cancers.1-8,14

One striking example is the H/ACA box small nucleolar ribonu-
cleoprotein core complex, consisting of DKC1, NHP2, NOP10,
and GAR1 (supplemental Figure 8A-B).73 This complex has 2
main roles: it is a component of the telomerase complex (in
combination with TERT, which does not show increased abun-
dance in AML samples in these data), and it is important for
RNA pseudouridylation.73 Recent work has shown the impor-
tance of pseudouridylation for maintenance of hematopoietic
stem cells,74 suggesting a possible role in AML pathogenesis.

In IDH1- and IDH2-mutated AML, neomorphic enzyme activity
and R-2-hydroxyglutarate (R-2HG) production lead to epige-
netic changes and dysfunction of the 2-oxoglutarate–dependent
TET enzymes.75 However, R-2HG inhibits a variety of 2-
oxoglutarate–dependent enzymes; in fact, prior work demon-
strated KDM4A/B/C to be particularly sensitive to R-2HG
inhibition.76,77 Indeed, we found increased protein abundance
of the KDM4A/B/C family of H3K9/27/36 demethylases in IDH-
mutant AML despite no change in RNA abundance; we also
show that transient expression of IDH1R132H in K562 cells reca-
pitulates this phenotype, suggesting a direct link between this
mutation and increased abundance of this protein family. This
link is further suggested by the previous observation that IDH1-
mutant gliomas show significantly increased H3K9 trimethyla-
tion,78 and expression of mutant IDH1 leads to increases in
H3K9, H3K27, and H3K36 trimethylation.79 Additional experi-
ments will be required to determine whether the increased
abundance of the KDM4A/B/C proteins represents a “futile”
adaptive mechanism in the face of strong R-2HG inhibition, or
whether alternative mechanisms affect the abundance of these
proteins in IDH-mutant AML samples.

Figure 7. Phosphoproteomic analyses of AML samples associated with specific mutations. (A) Volcano plot showing phosphorylated tyrosine sites in AML samples
vs lineage-depleted bone marrow from healthy donors. P values are calculated using the Mann-Whitney U test and corrected for multiple-hypothesis testing with
Benjamini-Hochberg method. Dashed red line shows P 5 .05. (B) Normalized abundance of selected tyrosine phosphosites with differences between AML and healthy
samples, including the activating site tyrosine-546 on the phosphatase PTPN11/SHP2, the activating site tyrosine-313 on PRKCD, and the activating site tyrosine-705 on
STAT3. Total protein abundance for all 3 proteins is shown as well, indicating that increased phosphorylation of these sites is not due to changes in overall protein
abundance in AML samples. *P , .05 represent significantly different sites after multiple hypothesis correction as calculated in panel A. All sites were normalized to
between 0 and 1 for display. (C) Volcano plot showing all phosphorylated sites in AML samples vs lineage-depleted bone marrow from healthy donors. P values are
calculated using the t test and corrected for multiple-hypothesis testing with Benjamini-Hochberg method. Dashed red line shows P 5 .05. (D) Normalized abundance
of selected phosphosites with differences between AML and healthy samples, including the serine-124 in the linker domain involved in optimal activation of AKT1 and
multiple sites on DNMT3B of unknown function. Total protein abundance of AKT1 and DNMT3B are shown as well. *P , .05 after multiple-hypothesis correction as in
panel C. (E) Volcano plot showing tyrosine phosphorylation sites comparing between FLT3D835-mutant AML samples and FLT3 wt AML samples as determined by
1-sided Mann-Whitney U test with multiple-hypothesis correction by Benjamin-Hochberg method. (F) Normalized abundance for each of the indicated phosphosites in
the indicated patient groups. *P , .05 represents significantly different tyrosine phosphorylation sites between FLT3D835-mutant AML samples and FLT3 wt AML sam-
ples as determined in panel E. ND indicates a phosphosite was not detected in that group. Only FLT3-ITD samples with high variant allele frequency are shown.
(G) Volcano plot showing differentially phosphorylated sites in samples initiated by PML-RARA (APL) vs other AML. P values are calculated using the t test and
corrected for multiple-hypothesis testing with Benjamini-Hochberg method. (H) Normalized abundance of phosphorylated threonine-172 in the activation loop site on
the kinase STK26 in APL vs other AML and healthy bone marrow. Total STK26 protein abundance is also shown. Normalized abundance of phosphorylation of the
known activating site serine-63 on the transcription factor JUN in APL vs other AML and healthy bone marrow. Normalized abundance of JUN RNA is shown, since total
JUN protein was below the limits of detection in this dataset. (I) Volcano plot showing differentially phosphorylated sites in TP53-mutant vs wt AML. P values are calculated
using the t test and corrected for multiple-hypothesis testing with Benjamini-Hochberg method. (J) Abundance of the degradation related site serine-183 on TP53 and the
activating site tyrosine-420 on FYN. NC, not calculable due to site being not detected in healthy samples; BM, bone marrow; ND, not detected; NS, not significant.
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In NPMc-mutant AML, a key feature of pathogenesis is the cyto-
plasmic mislocalization of NPM1 through the formation of
NPMc/NPM1wt heterodimers.38,80 The loss of functional NPM1
from the nucleolus is thought to be relevant for AML pathogen-
esis; recently, however, it has been suggested that NPMc may
also exhibit novel “gain-of-function” activity in the cytoplasm.81

Here, we show that NPMc-mutant AML samples have increased
abundance of several nuclear importins (caused by a posttran-
scriptional mechanism), perhaps related to the fact that NPMc
(but not wt NPM) interacts directly with several of these impor-
tins, which may stabilize them. The functional relevance of this
novel “gain-of-function” property of NPMc is not yet clear.

In this study, we also performed an unbiased evaluation of the
AML phosphoproteome. We have highlighted several findings
relevant to signaling in AML samples globally or in the context
of specific AML-initiating events. For example, we identified a
signature for signaling downstream of activating FLT3-TKD
mutations, which are correlated with activation of the SRC-family
kinases HCK and FGR, and also a highly active PRKCD. Of note,
the clinically effective, but “dirty,” kinase inhibitor midostaurin
(which improves overall survival when added to induction che-
motherapy in patients with FLT3 mutations82) was initially devel-
oped as an inhibitor of protein kinase C83 and exhibits strong
activity against the SRC-family kinases.84 These data suggest
that midostaurin's “off-target” inhibition of these kinases may
contribute to its clinical activity in patients with FLT3 mutations
by blocking activated signaling pathways downstream from
FLT3. Other SRC-family kinases, including LYN85 and SRC,86

have previously been implicated in signaling downstream of
FLT3-ITD mutations. In this dataset, samples with FLT3-ITD
mutations did not have a unique phospho-signature. However,
when we limited the analysis to the 4 AML samples with the
highest FLT3-ITD allelic ratios, many of the phosphopeptides
identified with FLT3-TKD-mutant samples demonstrated
similar trends. Targeted phosphoproteomic studies of FLT3-ITD
samples have demonstrated increased power to identify
phosphosignatures.19,55,87-89

In summary, we have generated a publicly available, deep-scale
proteomic and phosphoproteomic database of AML that pro-
vides a missing data layer for a representative part of the LAML
TCGA dataset, and we provide an interactive interface for easy
access to the data. We identified previously known and novel
dysregulated proteins in AML samples and validated several of
these findings orthogonally. This publicly available dataset will
serve as a valuable resource for the AML research community.
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