27 research outputs found

    Automatic Seizure Detection in Rats Using Laplacian EEG and Verification with Human Seizure Signals

    Get PDF
    Automated detection of seizures is still a challenging problem. This study presents an approach to detect seizure segments in Laplacian electroencephalography (tEEG) recorded from rats using the tripolar concentric ring electrode (TCRE) configuration. Three features, namely, median absolute deviation, approximate entropy, and maximum singular value were calculated and used as inputs into two different classifiers: support vector machines and adaptive boosting. The relative performance of the extracted features on TCRE tEEG was examined. Results are obtained with an overall accuracy between 84.81 and 96.51%. In addition to using TCRE tEEG data, the seizure detection algorithm was also applied to the recorded EEG signals from Andrzejak et al. database to show the efficiency of the proposed method for seizure detection

    WearLight: Towards a Wearable, Configurable Functional NIR Spectroscopy System for Noninvasive Neuroimaging

    Get PDF
    Functional near-infrared spectroscopy (fNIRS) has emerged as an effective brain monitoring technique to measure the hemodynamic response of the cortical surface. Its wide popularity and adoption in recent time attribute to its portability, ease of use, and flexibility in multimodal studies involving electroencephalography. While fNIRS is still emerging on various fronts including hardware, software, algorithm, and applications, it still requires overcoming several scientific challenges associated with brain monitoring in naturalistic environments where the human participants are allowed to move and required to perform various tasks stimulating brain behaviors. In response to these challenges and demands, we have developed a wearable fNIRS system, WearLight that was built upon an Internet-of-Things embedded architecture for onboard intelligence, configurability, and data transmission. In addition, we have pursued detailed research and comparative analysis on the design of the optodes encapsulating an near-infrared light source and a detector into 3-D printed material. We performed rigorous experimental studies on human participants to test reliability, signal-to-noise ratio, and configurability. Most importantly, we observed that WearLight has a capacity to measure hemodynamic responses in various setups including arterial occlusion on the forearm and frontal lobe brain activity during breathing exercises in a naturalistic environment. Our promising experimental results provide an evidence of preliminary clinical validation of WearLight. This encourages us to move toward intensive studies involving brain monitoring

    Effects of transcranial focal electrical stimulation via tripolar concentric ring electrodes on pentylenetetrazole-induced seizures in rats

    Get PDF
    Purpose: To study the effects of noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCRE) on the electrographic and behavioral activity from pentylenetetrazole (PTZ)-induced seizures in rats. Methods: The TCREs were attached to the rat scalp. PTZ was administered and, after the first myoclonic jerk was observed, TFS was applied to the TFS treated group. The electroencephalogram (EEG) and behavioral activity were recorded and studied. Results: In the case of the TFS treated group, after TFS, there was a significant (p = 0.001) decrease in power compared to the control group in delta, theta, and alpha frequency bands. The number of myoclonic jerks was significantly different (p = 0.002) with median of 22 and 4.5 for the control group and the TFS treated groups, respectively. The duration of myoclonic activity was also significantly different (p = 0.031) with median of 17.56 min for the control group versus 8.63 min for the TFS treated group. At the same time there was no significant difference in seizure onset latency and maximal behavioral seizure activity score between control and TFS treated groups. Conclusions: TFS via TCREs interrupted PTZ-induced seizures and electrographic activity was reduced toward the “baseline.” The significantly reduced electrographic power, number of myoclonic jerks, and duration of myoclonic activity of PTZ-induced seizures suggests that TFS may have an anticonvulsant effect

    Transcranial focal electrical stimulation via tripolar concentric ring electrodes does not modify the short- and long-term memory formation in rats evaluated in the novel object recognition test

    Get PDF
    Noninvasive transcranial focal electrical stimulation (TFS) via tripolar concentric ring electrodes (TCREs) has been under development as an alternative/complementary therapy for seizure control. Transcranial focal electrical stimulation has shown efficacy in attenuating penicillin-, pilocarpine-, and pentylenetetrazole-induced acute seizures in rat models. This study evaluated the effects of TFS via TCREs on the memory formation of healthy rats as a safety test of TFS. Short- and long-term memory formation was tested after the application of TFS using the novel object recognition (NOR) test. The following independent groups were used: naïve, control (without TFS), and TFS (treated). The naïve, control, and stimulated groups spent more time investigating the new object than the familiar one during the test phase. Transcranial focal electrical stimulation via TCREs given once does not modify the short- and long-term memory formation in rats in the NOR test. Results provide an important step towards a better understanding for the safe usage of TFS via TCREs

    Noninvasive Transcranial Focal Stimulation Via Tripolar Concentric Ring Electrodes Lessens Behavioral Seizure Activity of Recurrent Pentylenetetrazole Administrations in Rats

    Get PDF
    Epilepsy affects approximately 1% of the world population. Antiepileptic drugs are ineffective in approximately 30% of patients and have side effects. We have been developing a noninvasive transcranial focal electrical stimulation with our novel tripolar concentric ring electrodes as an alternative/complementary therapy for seizure control. In this study we demonstrate the effect of focal stimulation on behavioral seizure activity induced by two successive pentylenetetrazole administrations in rats. Seizure onset latency, time of the first behavioral change, duration of seizure, and maximal seizure severity score were studied and compared for focal stimulation treated (n = 9) and control groups (n = 10). First, we demonstrate that no significant difference was found in behavioral activity for focal stimulation treated and control groups after the first pentylenetetrazole administration. Next, comparing first and second pentylenetetrazole administrations, we demonstrate there was a significant change in behavioral activity (time of the first behavioral change) in both groups that was not related to focal stimulation. Finally, we demonstrate focal stimulation provoking a significant change in seizure onset latency, duration of seizure, and maximal seizure severity score. We believe that these results, combined with our previous reports, suggest that transcranial focal stimulation may have an anticonvulsant effect

    Toward a Noninvasive Automatic Seizure Control System in Rats With Transcranial Focal Stimulations via Tripolar Concentric Ring Electrodes

    Get PDF
    Epilepsy affects approximately 1% of the world population. Antiepileptic drugs are ineffective in approximately 30% of patients and have side effects. We are developing a noninvasive, or minimally invasive, transcranial focal electrical stimulation system through our novel tripolar concentric ring electrodes to control seizures. In this study, we demonstrate feasibility of an automatic seizure control system in rats with pentylenetetrazole-induced seizures through single and multiple stimulations. These stimulations are automatically triggered by a real-time electrographic seizure activity detector based on a disjunctive combination of detections from a cumulative sum algorithm and a generalized likelihood ratio test. An average seizure onset detection accuracy of 76.14% was obtained for the test set (n = 13). Detection of electrographic seizure activity was accomplished in advance of the early behavioral seizure activity in 76.92% of the cases. Automatically triggered stimulation significantly (p = 0.001) reduced the electrographic seizure activity power in the once stimulated group compared to controls in 70% of the cases. To the best of our knowledge this is the first closed-loop automatic seizure control system based on noninvasive electrical brain stimulation using tripolar concentric ring electrode electrographic seizure activity as feedback

    A case for hybrid BCIs: combining optical and electrical modalities improves accuracy

    Get PDF
    Near-infrared spectroscopy (NIRS) is a promising research tool that found its way into the field of brain-computer interfacing (BCI). BCI is crucially dependent on maximized usability thus demanding lightweight, compact, and low-cost hardware. We designed, built, and validated a hybrid BCI system incorporating one optical and two electrical modalities ameliorating usability issues. The novel hardware consisted of a NIRS device integrated with an electroencephalography (EEG) system that used two different types of electrodes: Regular gelled gold disk electrodes and tri-polar concentric ring electrodes (TCRE). BCI experiments with 16 volunteers implemented a two-dimensional motor imagery paradigm in off- and online sessions. Various non-canonical signal processing methods were used to extract and classify useful features from EEG, tEEG (EEG through TCRE electrodes), and NIRS. Our analysis demonstrated evidence of improvement in classification accuracy when using the TCRE electrodes compared to disk electrodes and the NIRS system. Based on our synchronous hybrid recording system, we could show that the combination of NIRS-EEG-tEEG performed significantly better than either single modality only

    Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes

    Get PDF
    Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected

    Sensor integration of multiple tripolar concentric ring electrodes improves pentylenetetrazole-induced seizure onset detection in rats

    No full text
    As epilepsy affects approximately one percent of the world population, electrical stimulation of the brain has recently shown potential for additive seizure control therapy. Previously, we applied noninvasive transcranial focal stimulation via tripolar concentric ring electrodes on the scalp of rats after inducing seizures with pentylenetetrazole. We developed a system to detect seizures and automatically trigger the stimulation and evaluated the system on the electrographic activity from rats. In this preliminary study we propose and validate a novel seizure onset detection algorithm based on exponentially embedded family. Unlike the previously proposed approach it integrates the data from multiple electrodes allowing an improvement of the detector performance. © 2012 IEEE
    corecore