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Near-infrared spectroscopy (NIRS) is a promising research tool that found its

way into the field of brain-computer interfacing (BCI). BCI is crucially dependent

on maximized usability thus demanding lightweight, compact, and low-cost

hardware. We designed, built, and validated a hybrid BCI system incorporating

one optical and two electrical modalities ameliorating usability issues. The novel

hardware consisted of a NIRS device integrated with an electroencephalography

(EEG) system that used two different types of electrodes: Regular gelled gold

disk electrodes and tri-polar concentric ring electrodes (TCRE). BCI experiments

with 16 volunteers implemented a two-dimensional motor imagery paradigm

in off- and online sessions. Various non-canonical signal processing methods

were used to extract and classify useful features from EEG, tEEG (EEG through

TCRE electrodes), and NIRS. Our analysis demonstrated evidence of improvement

in classification accuracy when using the TCRE electrodes compared to disk

electrodes and the NIRS system. Based on our synchronous hybrid recording

system, we could show that the combination of NIRS-EEG-tEEG performed

significantly better than either single modality only.

KEYWORDS

BCI, monitoring brain activity, NIRS system design, multi-modal BCI, EEG, classification,
matching pursuit, LASSO

1. Introduction

Brain-computer interfacing (BCI) is a technology first mentioned in the 1970s (Vidal,
1973). It is usually thought to employ non-invasive brain monitoring techniques to recklessly
collect brain activity data (Koo et al., 2015) and aims to provide people in need with a new
communication method (Min et al., 2010). It may form a bridge between brains and the
outside world bypassing the classical communication channels (Choi et al., 2017) with the
help of advancements in technology (Rashid et al., 2020), such as software (Rao and Scherer,
2013), signal processing (Ramadan and Vasilakos, 2017; Wierzgała et al., 2018) as well as
enhanced sensors (Martini et al., 2020).

Both sophisticated hardware and software are needed to create a BCI system as it is
supposed to capture seemingly noisy brain activity and translate it into an intended action
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(Khan et al., 2020). The software part mandates signal
preprocessing [e.g., filter motion artifacts (Aggarwal and Chugh,
2019)], feature extraction [e.g., matching pursuit (Mallat and
Zhang, 1993)], feature selection [e.g., least absolute shrinkage and
selection operator (Tay et al., 2021)], and classification (Spezialetti
et al., 2018). Nowadays machine learning approaches may be used
to that end as well (Rasheed, 2021).

Utilizing more than one non-invasive brain monitoring
technique on the same human scalp at the same time asks for so-
called hybrid devices and is a relatively new direction to enhance
BCI performance (Pfurtscheller et al., 2010; Fazli et al., 2012;
Hong et al., 2018; Shin et al., 2018). To this end, we employed a
commercially available EEG amplifier and signals from a special
electrode, the tri-polar concentric ring electrode (TCRE) (Besio W.
et al., 2006). We integrated the EEG system with a novel near-
infrared spectroscopy (NIRS) system (Almajidy et al., 2020) to
conduct 2D BCI experiments with a group of volunteers. Although
NIRS systems are available commercially, we were inspired with
the constant efforts to create new EEG systems and electrodes with
enhanced performance and lower cost and decided to create a low
cost portable system in an effort to make a portable dual modality
more affordable. That way we were able to quantify the contribution
of different modalities and their combinations.

2. Materials and methods

2.1. Data acquisition systems

The novel NIRS system (Almajidy et al., 2014) (see
Supplementary Figure 1) feature an Atmel Microcontroller
board (ATmega1280/V, USA) to control detector optodes and
synchronize the NIR LED sources’ off/on period. It sent the
collected data to a laptop at a 22 Hz sampling frequency and
controls constant current sources to supply the optodes with a
stable current. MATLAB (The MathWorks MATLAB R2022a)
scripts in the connected laptop were used to achieve signal
preprocessing, filtering, and analysis. The NIRS system casing
(which houses the system electronics), sensor casings (which house
the detectors’ preamplifier circuits), and the sensor holder rings
(which were attached to the cap) were designed with Solid Edge
software (Siemens Industry Software GmbH, Germany) and 3D
printed with a simple 3D printer (Replicator2, MakerBot Industries,
USA) using PLA filament (see Supplementary Figure 1).

Near-infrared spectroscopy optodes (sources/detectors, see
Figure 1) feature eight NIR detectors (BPW34-B, OSRAM Opto
Semiconductors GmbH, Germany). These photodiodes (PD) had
a spectral range of sensitivity between 350–1100 nm, a radiant
sensitive area of 7.45 mm2, and a 25 ns short switching time. Each
detector is attached to a spring to gently press it to the scalp’s skin
(see Figure 1).

Our NIRS optodes also have three NIRS dual sources,
comprised of three 850 nm photodiodes (TSHG6400, Vishay
Semiconductors, USA) and three 770 nm photodiodes
(MTE1077N1-R, Marktech Optoelectronics, USA). Arranging
NIRS sources and detectors in a commercial cap (NIRScap,
NIRx Medical Technologies, LLC) forms ten NIRS channels (see
Figure 2 for the montage used during experiments, more channels

can be created with different alignments). Optode holder rings
are arranged on the cap to separate the source from the detector
by 3 cm (SDS) to allow light penetration into the cortical region
of interest (see Figure 2). The complete NIRS system is versatile,
small, and portable (size = 11 cm × 8.5 cm × 3.7 cm) weighing
about ∼160 g (including sensors ∼ 390 g). Material price for the
system sums to about €1,470.

Two-disk electrodes and eight Tri-Polar Concentric Ring
Electrodes (TCRE, CREmedical, USA) connected to a commercial
g.USB amplifier (g.tec GmbH, Schiedlberg, Austria) are used to
collect scalp potential signals. The TCRE is thought to have a
higher local sensitivity and spatial resolution as compared to other
electrodes (Besio W. G. et al., 2006; Besio W. et al., 2006). Signals
measured by the TCRE outer ring provide an emulated EEG (eEEG)
equivalent to a regular disk EEG electrode (Makeyev et al., 2013;
Zhu et al., 2014). Hence in this paper, the signal extracted from all
three rings (which is processed to a single signal) is denominated
tEEG while the signal collected from the TCRE outer ring falls
in the category EEG. This peculiarity enables us to compare
the performance of both data types during BCI experiments. To
enhance EEG data spatial resolution, the scalp surface Laplacian is
employed. The second spatial derivative of the surface Laplacian
was shown to improve the high spatial frequency components of
the brain activity near the electrode (Babiloni et al., 1995). Besio
et al. (Besio W. G. et al., 2006; Besio et al., 2008) used a special
sensor namely the TCRE electrode (Besio W. G. et al., 2006; Besio
et al., 2011) to measure the Laplacian. The signal measured by this
sensor is calculated by: [16 * (Vm − Vd) − (Vo − Vd)] where Vm,
Vd, Vo are the voltage of the middle ring, central disc, and outer
ring of the TCRE electrode, respectively. The EEG signal collected
by this electrode is called tEEG by Besio et al. (Besio W. G. et al.,
2006; Besio et al., 2008). When compared to disc electrode signals;
tEEG signals’ spatial resolution, signal-to-noise ratio, and mutual
information are improved by approximately three, four, and twelve
times, respectively (Koka and Besio, 2007). The main disadvantage
of TCRE electrodes is their large surface area (diameter = 1.6 cm)
compared to the typical commercial EEG electrodes (diameter = 1
cm) (Ollikainen et al., 2000).

The main disadvantage of TCRE electrodes is their large surface
area (diameter = 1.6 cm) compared to the typical commercial EEG
electrodes (diameter = 1 cm) (Ollikainen et al., 2000).

TCRE electrodes are mounted on the cap by 3D-printed
holding rings following the international 10–20 system. Electrodes
are located at C1, C2, C3, C4, Cz, FC1, FC2, and FCz. A disk
electrode is located on the right mastoid and another on the left
mastoid. The disk electrodes serve as the reference and ground
contact, respectively. The sampling frequency of the measured
signals is set to 256 Hz; the signals are notch filtered at 60 Hz
frequency (because the experiments were done in the United States
as the mains frequency is 60 Hz) and band-pass filtered between 0.1
and 70 Hz. The layout map for the EEG/tEEG electrodes and NIRS
optodes covers the motor cortex area of the brain (see Figure 2).

2.2. Experimental paradigms

A motor imagery (MI) BCI paradigm was used during the
experiments. This paradigm is employed by many researchers
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FIGURE 1

Sensors used for data collection. (A) Light source (LED) of the NIRS system, (B) its photodiode (PD) detector, (C) regular gelled Au disk electrode and
(D) a TCRE electrode.

(McAvinue and Robertson, 2008; Wierzgała et al., 2018; Khan
et al., 2020) and means that the subject will imagine moving
his/her hands/feet rather than actually moving them. During the
experiments, we input tEEG and EEG data into BCI2000 software
(Schalk et al., 2004). The software provided the experiment’s cue
(on a 23.8 inch LCD screen 1.5 m from the subject) and showed the
subject’s feedback on their performance during online sessions.

The subjects performed the experiments in a dimly lit lab while
comfortably seated. To minimize motion artifacts, they were asked
to avoid moving. Sixteen subjects participated in the experiments
(aged 20–36 years). They all signed an informed consent form
before participating. The University of Rhode Island Institutional
Review Board (IRB) approved the protocol of the experiments.

The experiments consisted of one offline and one online
session. The offline session had five runs; each run consisted of
twenty trials. The subjects were asked to imagine one of four MI
tasks during each trial corresponding to the cue shown on the

FIGURE 2

Montage of electrodes, sources, and detectors of the hybrid BCI
system during off- and online experiments.

screen in front of them. The first task is preceded by a 10-s baseline
period. Each task lasts for 10 s and is followed by 10 s of rest. The
cue displayed was either an arrow pointing up (imagine moving
both hands, Both-hands MI), an arrow pointing down (imagine
moving both feet, Both-feet MI), an arrow pointing left (imagine
moving left hand, Left-hand MI), an arrow pointing right (imagine
moving right hand, Right-hand MI), or a blank screen to signal rest
(see Figure 3).

The offline session resulted in 100 trials, with 25 trials of each
task type. The offline session tasks have fixed and identical task
periods, were repeated periodically and the subjects received no
feedback about their performance during the task. The session’s
purpose is to provide data to train the online classifier. This
session was followed by an offline analysis during which the
BCI2000 software classifiers were adjusted according to the subject’s
performance and prepared for the online session.

The online session consisted of five runs with 20 trials each.
During these trials, (100 trials per subject) tasks are shown in
random order. The task cue given is a red square target appearing
at one edge of the screen. A red ball would appear consecutively,
and the subject would complete the task by hitting the target based
on imagined movements as before. The color of the target and
the ball will turn green if the subject accomplishes the task. The
task cue starts with 2 s baseline recording followed by 1 s during
which the target appears followed by the ball for a period between
2 and 15 s (see Figure 4). This ball’s presentation period depends
on the subject’s performance: A successful hit terminates the task
otherwise it would last for 15 s. The task is followed by a 1-s
feedback displaying either success (green target) or failure (red
target). A 15-s rest period (blank screen) completes the trial. The
subjects are advised to employ the MI tasks exercised during the
offline session. They imagined moving their hands/feet to move the
ball up/down and so on.

3. Results and discussion

3.1. EEG/tEEG data

Collected data were preprocessed to improve the signal-to-
noise ratio (SNR). For EEG/tEEG data, we used EEGlab software
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FIGURE 3

The offline session MI paradigm. The screen presented for each task for 10 s the relevant cue to the subject or was blank during rest between tasks.
An arrow pointing to the left, right, down, or up indicates to the subject to start the MI task (imagine left hand move, right hand move, both feet
move or both hands move, respectively) while a blank screen indicates a rest period.

(Delorme and Makeig, 2004) and bandpass filtered the data
between 1 and 48 Hz with a finite impulse response (FIR) filter
to minimize the main power crosstalk. We also employed this
software to reduce the motion artifacts as well as EOG, and EMG
components. We used a MATLAB script to apply a notch FIR filter
to reduce interference with our NIRS system.

Data from offline sessions for all subjects were analyzed using
EEGlab software to plot event-related potential (ERP) and the
power spectral density (PSD). Grand average plots are shown in
Figure 5 (ERP grand average) and Figure 6 (PSD grand average).
Each task’s grand average is calculated for 400 trials (16 subjects × 5
runs per offline session × 5 task trials per run).

Figure 5 shows the ERP grand averages for EEG data collected
from electrodes C1, C2, C3, C4, and Cz. The plots are limited
between −1 and 5 s to improve visibility (the original tasks were
10 s each) since no other peaks were seen in the remaining
time. In Figures 5A, B, the Right-hand MI plot has a higher
potential at around 0.3 s compared to other tasks. This is in
agreement with the literature (Neuper and Pfurtscheller, 2010;
Kaya et al., 2018) as the electrodes C1 and C3 monitor the brain
region which controls the right-hand movement. In Figures 5C,
D, the Left-hand MI plot has a higher potential at around 0.3 s
compared to other tasks. This is in agreement with the literature
(Romero et al., 2000; Neuper and Pfurtscheller, 2010) as the
electrodes C2 and C4 monitor the brain region which controls
the left-hand movement. In Figure 5E, the Both-feet MI plot
has a potential of about 4.2 µV at around 0.3 s. This potential
value although not the highest ERP potential in Figure 5E, has
the highest Both-feet MI potential value in Figure 5. This is in

FIGURE 4

Screenshot during the online BCI MI session. During the task, a red
target and a ball is presented. If the subject succeeded in moving
the ball into the target by performing the MI tasks (as explained
above) the target will change color to green to indicate success.

agreement with the literature as the electrode Cz monitors the brain
region which controls the feet movements. The lower potential
compared to other electrodes is due to the special location of this
region within the brain’s central sulcus (Neuper and Pfurtscheller,
2010).

In Figure 6, which displays the plots for the PSD grand
averages, the Rest plot around 9 Hz shows the highest power. Right-
hand MI has the lowest power around 9 Hz in data from electrode
C1. Left-hand MI has the lowest power around 9 Hz in data from
electrodes C2 and C4. PSD at the specific brain region of interest is
expected to be lower while performing the MI task compared to the
rest period.

3.2. NIRS data

Data from our NIRS channels was first preprocessed and
analyzed by MATLAB scripts. Data was first bandpass filtered
between 0.01 and 0.1 Hz by an FIR bandpass to reduce the effect
of Mayer waves (Yücel et al., 2016). Data were then smoothed by
a 7-point moving average filter. Data from the 10 NIRS channels
resulting from the combination of the NIRS sources and detectors
(see Figure 2) was collected for the 16 subjects with a total of 400
trials for each task (16 subjects × 5 runs per offline session × 5
tasks per trial run). Only HbO2 data were used during NIRS data
analysis.

In Figure 7A, NIRS data from one subject (subject 10) collected
from channel 10 was plotted for 25 trials of Both hand MI task
performed during the offline session, the mean across these trials
was also plotted (the black line). Channel 10 monitors the brain area
which controls the left hand (see Figure 2). The mean data showed
an increase in value with the start of the Both-hands MI task. The
increase reached its maximum value around 5 s and dropped to 0
at 10 s. The mean data for this subject (subject 10) and the other
15 subjects who participated in the offline sessions were plotted for
the same task and the same channel in Figure 7B the grand average
(GA) was also plotted (the black line, the peak value around 5 s).
The grand average shows an increase during the task which drops
in value before the end of the 10 s.

Grand averages for all the MI tasks from all the NIRS
channels are shown in Figure 8. Channels 1–4 roughly monitor
the brain region controlling right-hand movements, channels 5
and 6 feet movements, and channels 7–10 left-hand movements
(see Figure 2). Plots of HbO2 concentration during the Right-hand
MI show an increase in value from channels 1–3 while during
Both-hands MI the values channels 1, 2, 4, 7–10 increase.
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FIGURE 5

Event-related potential signal grand average of the EEG measurements collected while performing the four motor imagery tasks during the offline
session from electrodes (A) C1, (B) C3, (C) C2, (D) C4, and (E) Cz. The plots show the tasks’ first 5 s (from the total 10 s per task) to improve the
visibility as the remaining tasks’ time showed no other peaks.

HbO2 concentration during the Left-hand MI increases in
channels 7–10 while during the Both-feet MI the increase is visible
in channel 5. The results from NIRS data as well as the results from
the EEG data (ERP and PSD) are consistent with the literature (Shin
et al., 2018). It shows that the physiological changes associated with
brain activity at specific regions are successfully monitored by our
NIRS device and hence it can be combined with tEEG for BCI
purposes.

3.3. Classification accuracy (offline
session)

Features were extracted from the offline session to compare the
accuracy across the data-acquiring methods as well as the optimum

combination for a BCI application. To extract features, a sliding
window of 5 s width and 1-s step size was employed. A matching
pursuit (MP) algorithm (Mallat and Zhang, 1993) was directly
applied to EEG/tEEG data to extract seven features. To extract
five more features fifteen FIR bandpass filters were used to narrow
band filter the signals between 5 and 35 Hz (Grosse-Wentrup
and Buss, 2008). Each filter has a window of 2 Hz and hence the
first filtered from 5 to 7 Hz while the fifteenth filter covered 33–
35 Hz. To extract features from these narrow band signals we used
signal power, Teager-Kaiser Energy (TKE) operator (Kaiser, 1990),
multiclass CSP information theoretic feature extraction (ITFE)
(Grosse-Wentrup and Buss, 2008), PSD mean, and amplitude
mean.

To extract features by MP from EEG/tEEG data,
we prepared a twenty-five Gabor atoms dictionary (see
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FIGURE 6

Power spectral density grand average of EEG measurements collected while performing the four motor imagery tasks and Rest during the offline
session from electrodes (A) C1, (B) C3, (C) C2, (D) C4, and (E) Cz.

Supplementary Figure 2A). The data within the feature
extraction window (5 s window) were compared with a
Gabor atoms dictionary. When a match between Gabor atoms

and data is found, we calculated the statistical features of
matching atoms. Extracted features were mean atom frequency,
mean atom amplitude, mean atom phase, mean atom scale,
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FIGURE 7

(A) Exemplary plot of the change in HbO2 concentration calculated from the NIRS signal recorded from subject 10, channel 10 during the offline
session. Plots are done for the 25 trials of the Both-hands MI task as well as the mean for all the trials (black line). (B) Plot of the grand average (black
line) change in HbO2 and the mean change in HbO2 (data from 25 trials per subject) from channel 10. Data were collected from 16 subjects while
performing Both-hands MI during the offline session.

variance of the atom phase, maximum atom amplitude, and
the maximum scalar product of each atom with the data
within the window.

Seven features were extracted from NIRS measurements:
two features by MP, the five other features by ITFE, HbO2
amplitude variance, HbO2 amplitude mean, HbO2 slope mean,
HbO2 slope mean second derivative. To extract MP features, we
created thirty atoms Gabor dictionary (see Supplementary Figure
2B). The extracted MP features are the mean atom amplitude
and the maximum scalar product of each atom with the data
within the window.

Extracted features were either fed directly to an ensemble
classifier (Dietterich, 2000; Maclin and Opitz, 2011) or the feature
size was reduced by applying the feature selection method Least
Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani,
1996; Tay et al., 2021).

Figure 9A displays accuracy calculations resulting from the
initial use of LASSO, while Figure 9B shows the accuracy calculated
employing an ensemble classifier only. Accuracies above 85%
(median around 88%) were achieved when combining all three data
sets (EEG + tEEG + NIRS), while accuracies above 83% (median
around 87%) were achieved when combining tEEG + NIRS. We
used the Wilcoxon rank-sum test to compare the accuracy obtained
by different data collection methods namely EEG, tEEG, and NIRS
as well as their combinations. Combining NIRS with tEEG or
EEG (dual modality) performed significantly better than any single
modality as shown in Figures 9A, B. No significant difference was
found between NIRS-EEG and NIRS-tEEG. In Figure 9A p-values
of 8 × 10−4 were achieved when EEG was compared with NIRS and
5.6 × 10−4 when compared with tEEG. Feature size reduction did
not improve the accuracy of comparisons in Figures 9A, B.

3.4. Online session

Before commencing the online session for any subject, tEEG
data was analyzed with the offline analysis package of the BCI2000

software (Schalk et al., 2004). The analysis showed the active
channels during each task. We used the analysis results to
determine classifiers for the subsequent online session. During the
online sessions, signals were collected with the 10 NIRS channels
and eight tEEG channels. Only twelve of the original sixteen
subjects participated in the online sessions. Feature extraction of
online signals was limited to the identified active channels specified
during the offline analysis. Two classifiers were employed, right vs.
left and up vs. down.

Twelve features were extracted from tEEG data and seven
from the NIRS measurements (with the same methods used for
the offline data, see above). Deviating from offline sessions, we
used the common spatial pattern (CSP) (Sannelli et al., 2010)
instead of ITFE which may be interpreted as a multi-class CSP
(Grosse-Wentrup and Buss, 2008; Lotte and Guan, 2011). As
mentioned, we only required a two-class classification for the
online sessions. A further technical difference between off- and
online sessions was the lack of 8 EEG channels for the online
montage while the offline one featured 8 EEG and 8 tEEG
channels.

Figure 10A depicts the mean classification accuracies per run
for NIRS, tEEG, and NIRS + tEEG data collected from subject 5
during the online session. Figure 10B illustrates boxplots for all
five online runs of subject 5. In both graphs, we can see that the
combined NIRS + tEEG gave better accuracy compared to a single
modality. We can also see that the accuracy of the results with
the novel NIRS system is within an acceptable range and their
addition to tEEG data gave a significant improvement to the overall
accuracy.

Figure 11 illustrates the mean accuracies of the 5 online
runs during the online session. For all subjects (n = 12), the
combined NIRS + tEEG gave overall higher accuracy compared
to a single modality. The performances of subjects displayed
were quite variable. tEEG data accuracies were higher for some
subjects while NIRS measurements showed higher accuracies for
others. This could be explained by the different characteristics
of each measurement. NIRS is an optical measurement; it is
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FIGURE 8

Plot of the grand average of the HbO2 concentration from the NIRS signal recorded from 16 participants while performing mentioned MI tasks. Data
was collected from channels (A) Channel 1, (B) Channel 2, (C) Channel 3, (D) Channel 4, (E) Channel 5, (F) Channel 6, (G) Channel 7, (H) Channel 8,
(I) Channel 9, and (J) Channel 10.
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FIGURE 9

Classification accuracy of BCI measurements collected with NIRS and TCREs during the offline sessions (n = 16). Wilcoxon rank-sum test was
employed to assess the statistical difference in accuracy between data types. The classifiers were 10-fold cross-validated. (A) LASSO feature
selection was applied before feeding the selected features to an ensemble classifier. (B) All features were fed to an ensemble classifier only.
∗p ≤ 0.05, ∗∗p ≤ 0.01, and ∗∗∗p ≤ 0.001.

FIGURE 10

(A) Mean classification accuracy of subject 5 data collected during the five online runs. (B) Boxplots of the classification accuracy of subject 5 data
collected during the online session.

more susceptible to ambient light, skin, and hair color. tEEG
is more susceptible to motion artifacts, skin thickness and
perspiration.

FIGURE 11

The classification accuracy (five runs per subject) for the online data
session (n = 12). Each star marks the accuracy 5-fold
cross-validated; lines connect one subject’s detailed performance.

4. Conclusion

Near-infrared spectroscopy application in BCI is relatively new
compared to the well-known EEG use. We developed a dual-modal
BCI system with two non-invasive modalities at a moderate cost
compared to other systems (Scholkmann et al., 2014).

Results from an offline BCI session with 16 subjects showed that
their performance fell within a comparable range. It corroborated
the novel NIRS system’s capability to efficiently monitor subjects’
brain activity and to assess movement intents. It also revealed
differences in accuracy between measurement modalities and their
combinations. NIRS performed significantly better when combined
with tEEG (vs. EEG). Our decision to utilize the TCRE electrode
tEEG to enhance BCI performance thus proved to be correct.
Lastly, the offline session allowed us to adjust and individualize
classifiers for each subject according to the subject’s performance
for the following online session.

Results from the actual BCI experiments, the online session,
revealed strong inter-subject differences in the classification
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accuracies of tEEG and NIRS data. This may be due to
different skin/hair colors, skin thickness, as well as other possible
physiological and anatomical factors. The general performance
shows strong variances between subjects with some performing
better due to an inherent capability or higher ability to focus
during the sessions or both. However, our NIRS system compared
very well with the usual electrical BCI modalities, and it showed
even particularly promising results when combined into a hybrid
NIRS + tEEG BCI system for all the subjects.

Although the NIRS system was used to monitor the motor areas
of the brain, there is no reason why it can’t be efficiently employed
to monitor other brain regions of interest as well. The flexibility of
montages with optodes arbitrarily fixed on any EEG cap supports
further studies. The number of channels may be increased by
changing the source-detector alignment map and even add more
inexpensive sources or detectors to yield higher channel counts.
Our modular system is affordable, portable, lightweight, and can be
employed efficiently with other modalities to monitor brain activity
at different regions of interest.
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