52 research outputs found
Softening Shape Memory Polymer Substrates for Bioelectronic Devices With Improved Hydrolytic Stability
Candidate materials for next generation neural recording electrodes include shape memory polymers (SMPs). These materials have the capability to undergo softening after insertion in the body, and therefore reduce the mismatch in modulus that usually exists between the device and the tissue. Current SMP formulations, which have shown promise for neural implants, contain ester groups within the main chain of the polymer and are therefore prone to hydrolytic decomposition under physiological conditions over periods of 11–13 months in vivo, thus limiting the utility for chronic applications. Ester free polymers are stable in harsh condition (PBS at 75°C or NaOH at 37°C) and accelerated aging results suggest that ester free SMPs are projected to be stable under physiological condition for at least 7 years. In addition, the ester free SMP is compatible with microfabrication processes needed for device fabrication. Furthermore, they demonstrate in vitro biocompatibility as demonstrated by high levels of cell viability from ISO 10993 testing
Understanding the Effects of Both CD14-Mediated Innate Immunity and Device/Tissue Mechanical Mismatch in the Neuroinflammatory Response to Intracortical Microelectrodes
Intracortical microelectrodes record neuronal activity of individual neurons within the brain, which can be used to bridge communication between the biological system and computer hardware for both research and rehabilitation purposes. However, long-term consistent neural recordings are difficult to achieve, in large part due to the neuroinflammatory tissue response to the microelectrodes. Prior studies have identified many factors that may contribute to the neuroinflammatory response to intracortical microelectrodes. Unfortunately, each proposed mechanism for the prolonged neuroinflammatory response has been investigated independently, while it is clear that mechanisms can overlap and be difficult to isolate. Therefore, we aimed to determine whether the dual targeting of the innate immune response by inhibiting innate immunity pathways associated with cluster of differentiation 14 (CD14), and the mechanical mismatch could improve the neuroinflammatory response to intracortical microelectrodes. A thiol-ene probe that softens on contact with the physiological environment was used to reduce mechanical mismatch. The thiol-ene probe was both softer and larger in size than the uncoated silicon control probe. Cd14-/- mice were used to completely inhibit contribution of CD14 to the neuroinflammatory response. Contrary to the initial hypothesis, dual targeting worsened the neuroinflammatory response to intracortical probes. Therefore, probe material and CD14 deficiency were independently assessed for their effect on inflammation and neuronal density by implanting each microelectrode type in both wild-type control and Cd14-/- mice. Histology results show that 2 weeks after implantation, targeting CD14 results in higher neuronal density and decreased glial scar around the probe, whereas the thiol-ene probe results in more microglia/macrophage activation and greater blood–brain barrier (BBB) disruption around the probe. Chronic histology demonstrate no differences in the inflammatory response at 16 weeks. Over acute time points, results also suggest immunomodulatory approaches such as targeting CD14 can be utilized to decrease inflammation to intracortical microelectrodes. The results obtained in the current study highlight the importance of not only probe material, but probe size, in regard to neuroinflammation
Fermion loops, loop cancellation and density correlations in two dimensional Fermi systems
We derive explicit results for fermion loops with an arbitrary number of
density vertices in two dimensions at zero temperature. The 3-loop is an
elementary function of the three external momenta and frequencies, and the
N-loop can be expressed as a linear combination of 3-loops with coefficients
that are rational functions of momenta and frequencies. We show that the
divergencies of single loops for low energy and small momenta cancel each other
when loops with permuted external variables are summed. The symmetrized N-loop,
i.e. the connected N-point density correlation function of the Fermi gas, does
not diverge for low energies and small momenta. In the dynamical limit, where
momenta scale to zero at fixed finite energy variables, the symmetrized N-loop
vanishes as the (2N-2)-th power of the scale parameter.Comment: 24 pages (including 3 EPS figures), LaTeX2e; submitted to Phys. Rev.
Identification of neutral biochemical network models from time series data
<p>Abstract</p> <p>Background</p> <p>The major difficulty in modeling biological systems from multivariate time series is the identification of parameter sets that endow a model with dynamical behaviors sufficiently similar to the experimental data. Directly related to this parameter estimation issue is the task of identifying the structure and regulation of ill-characterized systems. Both tasks are simplified if the mathematical model is canonical, <it>i.e</it>., if it is constructed according to strict guidelines.</p> <p>Results</p> <p>In this report, we propose a method for the identification of admissible parameter sets of canonical S-systems from biological time series. The method is based on a Monte Carlo process that is combined with an improved version of our previous parameter optimization algorithm. The method maps the parameter space into the network space, which characterizes the connectivity among components, by creating an ensemble of decoupled S-system models that imitate the dynamical behavior of the time series with sufficient accuracy. The concept of sloppiness is revisited in the context of these S-system models with an exploration not only of different parameter sets that produce similar dynamical behaviors but also different network topologies that yield dynamical similarity.</p> <p>Conclusion</p> <p>The proposed parameter estimation methodology was applied to actual time series data from the glycolytic pathway of the bacterium <it>Lactococcus lactis </it>and led to ensembles of models with different network topologies. In parallel, the parameter optimization algorithm was applied to the same dynamical data upon imposing a pre-specified network topology derived from prior biological knowledge, and the results from both strategies were compared. The results suggest that the proposed method may serve as a powerful exploration tool for testing hypotheses and the design of new experiments.</p
Dust Masses, PAH Abundances, and Starlight Intensities in the SINGS Galaxy Sample
Physical dust models are presented for 65 galaxies in SINGS that are strongly detected in the four IRAC bands and three MIPS bands. For each galaxy we estimate (1) the total dust mass, (2) the fraction of the dust mass contributed by PAHs, and (3) the intensity of the starlight heating the dust grains. We find that spiral galaxies have dust properties resembling the dust in the local region of the Milky Way, with similar dust-to-gas ratio and similar PAH abundance. The observed SEDs, including galaxies with SCUBA photometry, can be reproduced by dust models that do not require "cold" (T ≾ 10 K) dust. The dust-to-gas ratio is observed to be dependent on metallicity. In the interstellar media of galaxies with A_O ≡ 12 + log_(10)(O/H) > 8.1, grains contain a substantial fraction of interstellar Mg, Si, and Fe. Galaxies with A_O 8.1 have a median q_(PAH) = 3.55%. The derived dust masses favor a value X_(CO) ≈ 4 × 10^(20) cm^(-2) (K km s^(-1))^(-1) for the CO-to-H_2 conversion factor. Except for some starbursting systems (Mrk 33, Tol 89, NGC 3049), dust in the diffuse ISM dominates the IR power
Electrons, pseudoparticles, and quasiparticles in the one-dimensional many-electron problem
We generalize the concept of quasiparticle for one-dimensional (1D)
interacting electronic systems. The and
quasiparticles recombine the pseudoparticle colors and (charge and spin
at zero magnetic field) and are constituted by one many-pseudoparticle {\it
topological momenton} and one or two pseudoparticles. These excitations cannot
be separated. We consider the case of the Hubbard chain. We show that the
low-energy electron -- quasiparticle transformation has a singular charater
which justifies the perturbative and non-perturbative nature of the quantum
problem in the pseudoparticle and electronic basis, respectively. This follows
from the absence of zero-energy electron -- quasiparticle overlap in 1D. The
existence of Fermi-surface quasiparticles both in 1D and three dimensional (3D)
many-electron systems suggests there existence in quantum liquids in dimensions
1D3. However, whether the electron -- quasiparticle overlap can vanish in
D1 or whether it becomes finite as soon as we leave 1D remains an unsolved
question.Comment: 43 pages, latex, no figures, submitted to Physical Review
Warm molecular hydrogen in the Spitzer SINGS galaxy sample
(simplified) Results on the properties of warm H2 in 57 normal galaxies are
derived from H2 rotational transitions, obtained as part of SINGS. This study
extends previous extragalactic surveys of H2, the most abundant constituent of
the molecular ISM, to more common systems (L_FIR = e7 to 6e10 L_sun) of all
morphological and nuclear types. The S(1) transition is securely detected in
the nuclear regions of 86% of SINGS galaxies with stellar masses above 10^9.5
M_sun. The derived column densities of warm H2 (T > ~100 K), even though
averaged over kiloparsec-scale areas, are commensurate with those of resolved
PDRs; the median of the sample is 3e20 cm-2. They amount to between 1% and >30%
of the total H2. The power emitted in the sum of the S(0) to S(2) transitions
is on average 30% of the [SiII] line power, and ~4e-4 of the total infrared
power (TIR) within the same area for star-forming galaxies, which is consistent
with excitation in PDRs. The fact that H2 emission scales tightly with PAH
emission, even though the average radiation field intensity varies by a factor
ten, can also be understood if both tracers originate predominantly in PDRs,
either dense or diffuse. A large fraction of the 25 LINER/Sy targets, however,
strongly depart from the rest of the sample, in having warmer H2 in the excited
states, and an excess of H2 emission with respect to PAHs, TIR and [SiII]. We
propose a threshold in H2 to PAH power ratios, allowing the identification of
low-luminosity AGNs by an excess H2 excitation. A dominant contribution from
shock heating is favored in these objects. Finally, we detect, in nearly half
the star-forming targets, non-equilibrium ortho to para ratios, consistent with
FUV pumping combined with incomplete ortho-para thermalization by collisions,
or possibly non-equilibrium PDR fronts advancing into cold gas.Comment: ApJS, in pres
User-initialized active contour segmentation and golden-angle real-time cardiovascular magnetic resonance enable accurate assessment of LV function in patients with sinus rhythm and arrhythmias
BACKGROUND: Data obtained during arrhythmia is retained in real-time cardiovascular magnetic resonance (rt-CMR), but there is limited and inconsistent evidence to show that rt-CMR can accurately assess beat-to-beat variation in left ventricular (LV) function or during an arrhythmia. METHODS: Multi-slice, short axis cine and real-time golden-angle radial CMR data was collected in 22 clinical patients (18 in sinus rhythm and 4 patients with arrhythmia). A user-initialized active contour segmentation (ACS) software was validated via comparison to manual segmentation on clinically accepted software. For each image in the 2D acquisitions, slice volume was calculated and global LV volumes were estimated via summation across the LV using multiple slices. Real-time imaging data was reconstructed using different image exposure times and frame rates to evaluate the effect of temporal resolution on measured function in each slice via ACS. Finally, global volumetric function of ectopic and non-ectopic beats was measured using ACS in patients with arrhythmias. RESULTS: ACS provides global LV volume measurements that are not significantly different from manual quantification of retrospectively gated cine images in sinus rhythm patients. With an exposure time of 95.2 ms and a frame rate of > 89 frames per second, golden-angle real-time imaging accurately captures hemodynamic function over a range of patient heart rates. In four patients with frequent ectopic contractions, initial quantification of the impact of ectopic beats on hemodynamic function was demonstrated. CONCLUSION: User-initialized active contours and golden-angle real-time radial CMR can be used to determine time-varying LV function in patients. These methods will be very useful for the assessment of LV function in patients with frequent arrhythmias
- …