43,872 research outputs found
Recommended from our members
Full-length prepro-alpha-factor can be translocated across the mammalian microsomal membrane only if translation has not terminated.
We have previously shown that fully synthesized prepro-alpha-factor (pp alpha F), the precursor for the yeast pheromone alpha-factor, can be translocated posttranslationally across yeast rough microsomal (RM) membranes from a soluble, ribosome-free pool. We show here that this is not the case for translocation of pp alpha F across mammalian RM. Rather we found that a small amount of translocation of full-length pp alpha F is observed, but is solely due to polypeptide chains that were still ribosome bound and covalently attached to tRNA, i.e., not terminated. In addition, both signal recognition particle (SRP) and SRP receptor are required, i.e., the same targeting machinery that is normally responsible for the coupling between protein synthesis and translocation. Thus, the molecular requirements for targeting are distinct from posttranslational translocation across yeast RM. As termination is generally regarded as part of translation, the translocation of full-length pp alpha F across mammalian RM does not occur "posttranslationally," albeit independent of elongation. Most other proteins for which posttranslational translocation across mammalian RM was previously claimed fall into the same category in that ribosome attachment as peptidyl-tRNA is required. To clearly separate these two distinct processes, we suggest that the term posttranslational be reserved for those processes that occur in the complete absence of the translational machinery. We propose the term "ribosome-coupled translocation" for the events described here
Discrete nascent chain lengths are required for the insertion of presecretory proteins into microsomal membranes.
Ribosomes synthesizing nascent secretory proteins are targeted to the membrane by the signal recognition particle (SRP), a small ribonucleoprotein that binds to the signal peptide as it emerges from the ribosome. SRP arrests further elongation, causing ribosomes to stack behind the arrested ribosome. Upon interaction of SRP with its receptor on the ER membrane, the translation arrest is released and the ribosome becomes bound to the ER membrane. We have examined the distribution of unattached and membrane-bound ribosomes during the translation of mRNAs encoding two secretory proteins, bovine preprolactin and rat preproinsulin I. We find that the enhancement of ribosome stacking that occurs when SRP arrests translation of these proteins is relaxed in the presence of microsomal membranes. We also demonstrate that two previously described populations of membrane-associated ribosomes, distinguished by their sensitivity to high salt or EDTA extraction, correspond to ribosomes that have synthesized differing lengths of the nascent polypeptide. This analysis has revealed that nascent chain insertion into the membrane begins at distinct points for different presecretory proteins
Incorporation in vivo of 14C-Labelled Amino Acids into the Proteins of Mitochondrial Ribosomes from Neurospora crassa Sensitive to Cycloheximide and Insensitive to Chloramphenicol
Radioactive amino acids were incorporated in vivo into Neurospora crassa cells, and the mitochondrial ribosomes were isolated. The incorporation of radioactivity into the proteins of these ribosomes was inhibited by cycloheximide, but not by chloramphenicol. It is therefore concluded that these proteins are synthesized on the cycloheximide sensitive and chloramphenicol insensitive cytoplasmic ribosomes
Neutrino factory in stages: Low energy, high energy, off-axis
We discuss neutrino oscillation physics with a neutrino factory in stages,
including the possibility of upgrading the muon energy within the same program.
We point out that a detector designed for the low energy neutrino factory may
be used off-axis in a high energy neutrino factory beam. We include the
re-optimization of the experiment depending on the value of theta_13 found. As
upgrade options, we consider muon energy, additional baselines, a detector mass
upgrade, an off-axis detector, and the platinum (muon to electron neutrino)
channels. In addition, we test the impact of Daya Bay data on the optimization.
We find that for large theta_13 (theta_13 discovered by the next generation of
experiments), a low energy neutrino factory might be the most plausible minimal
version to test the unknown parameters. However, if a higher muon energy is
needed for new physics searches, a high energy version including an off-axis
detector may be an interesting alternative. For small theta_13 (theta_13 not
discovered by the next generation), a plausible program could start with a low
energy neutrino factory, followed by energy upgrade, and then baseline or
detector mass upgrade, depending on the outcome of the earlier phases.Comment: 23 pages, 10 (color) figures. Minor clarifications and changes. Final
version to appear in PR
Saccharomyces cerevisiae and Schizosaccharomyces pombe contain a homologue to the 54-kD subunit of the signal recognition particle that in S. cerevisiae is essential for growth.
We have isolated and sequenced genes from Saccharomyces cerevisiae (SRP54SC) and Schizosaccharomyces pombe (SRP54sp) encoding proteins homologous to both the 54-kD protein subunit (SRP54mam) of the mammalian signal recognition particle (SRP) and the product of a gene of unknown function in Escherichia coli, ffh (Römisch, K., J. Webb, J. Herz, S. Prehn, R. Frank, M. Vingron, and B. Dobberstein. 1989. Nature (Lond.). 340:478-482; Bernstein H. D., M. A. Poritz, K. Strub, P. J. Hoben, S. Brenner, P. Walter. 1989. Nature (Lond.). 340:482-486). To accomplish this we took advantage of short stretches of conserved sequence between ffh and SRP54mam and used the polymerase chain reaction (PCR) to amplify fragments of the homologous yeast genes. The DNA sequences predict proteins for SRP54sc and SRP54sp that are 47% and 52% identical to SRP54mam, respectively. Like SRP54mam and ffh, both predicted yeast proteins contain a GTP binding consensus sequence in their NH2-terminal half (G-domain), and methionine-rich sequences in their COOH-terminal half (M-domain). In contrast to SRP54mam and ffh the yeast proteins contain additional Met-rich sequences inserted at the COOH-terminal portion of the M-domain. SRP54sp contains a 480-nucleotide intron located 78 nucleotides from the 5' end of the open reading frame. Although the function of the yeast homologues is unknown, gene disruption experiments in S. cerevisiae show that the gene is essential for growth. The identification of SRP54sc and SRP54sp provides the first evidence for SRP related proteins in yeast
Treefall Gaps and the Maintenance of Species Diversity in a Tropical Forest
The maintenance of species diversity by treefall gaps is a longâstanding paradigm in forest ecology. Gaps are presumed to provide an environment in which tree species of differing competitive abilities partition heterogeneous resources. The empirical evidence to support this paradigm, however, remains scarce, and some recent studies even suggest that gaps do not maintain the diversity of shadeâtolerant species. Although there is evidence that gaps maintain the diversity of pioneer trees, most of this evidence comes from studies that did not make comparisons between gaps and intact forest sites (controls). Further, nearly all studies on the maintenance of diversity by gaps have ignored lianas, an important component of both oldâworld and neotropical forests. We tested the hypothesis that treefall gaps maintain shadeâtolerant tree, pioneer tree, and liana species diversity in an oldâgrowth forest on Barro Colorado Island (BCI), Panama. We compared the density and species richness of these guilds between paired gap and nonâgap sites on both a perâarea and a perâindividual (per capita) basis. We found no difference in shadeâtolerant tree density and species richness between the gap and nonâgap sites. Both pioneer tree and liana density and species richness, however, were significantly higher in the gap than in the nonâgap sites on both a perâarea and a perâindividual basis. These results suggest that gaps maintain liana species diversity and that this effect is not merely a consequence of increased density. Furthermore, our data confirm the longâheld belief that gaps maintain pioneer tree species diversity. Because lianas and pioneer trees combined account for âŒ43% of the woody plant species on BCI, and in other forests, our results are likely to be broadly applicable and suggest that gaps play a strong role in the maintenance of woody species diversity
- âŠ