892 research outputs found

    Identification of human papillomavirus DNA in cutaneous lesions of Cowden syndrome

    Get PDF
    Background: Cowden syndrome (CS) or multiple hamartoma syndrome is a cancer-associated genodermatosis inherited in an autosomal dominant pattern. One of the diagnostic criteria is facial papules which are felt to be trichilemmomas, benign hair follicle tumors, which some consider to be induced by human papillomavirus (HPV). Objective: To search for HPV in skin tumors, especially trichilemmomas, from patients with CS. Methods: Skin lesions from patients with CS were classified histologically. Each tumor was then analyzed for HPV DNA by polymerase chain reaction with different primer sets; positive amplicons were typed by direct sequencing. Results: Twenty-nine biopsies from 7 patients with CS were investigated. Only 2 of 29 tumors clinically suspected of being trichilemmomas were confirmed histologically. In addition, 3 sclerotic fibromas, also typical of CS, were found, as well as 1 sebaceous hyperplasia. The other 23 lesions showed histological features of HPV-induced tumors in various stages of development. HPV DNA was found in 19 of 29 cutaneous lesions. Tumors without any histological signs of HPV induction were negative for HPV DNA. Two tumors which were histologically classified as common warts contained HPV types 27 and 28. All the 17 other HPV types belong to the group of epidermodysplasia-verruciformis-associated types. Conclusions: The majority of cutaneous lesions in CS contain HPV DNA. They may have a variety of histological patterns. Trichilemmomas are not clinically distinctive and can be difficult to identify in CS patients. Copyright (C) 2003 S. Karger AG, Basel

    Multifragmentation near the threshold

    Get PDF
    We investigate the onset of multifragmentation employing an improved version of the N-body ‘‘quantum’’ molecular-dynamics approach. We study in detail the reaction 18O+197Au at 84 MeV/nucleon and find good agreement between the calculated results and the data for the double-differential proton cross section, the mass yield, the multiplicity, the kinetic energy of the fragments, and even for the kinematic correlations between intermediate mass fragments (IMF’s), which have been measured in this experiment for the first time. We observe a strong correlation between the impact parameter and both the size of the target remnant as well as the average proton multiplicity. Hence both observables can be used to determine the impact parameter experimentally. The IMF’s come from the most central collisions. The calculations confirm the experimental result that they are not emitted from an equilibrated system. Although the inclusive energy spectra look thermal, we cannot identify an impact parameter-independent isotropically emitting source. Even in central collisions global equilibrium is not observed. We find that multifragment emission at this bombarding energy is caused by a process very similar to that proposed in the macroscopic cold multifragmentation model. Thus it has a different origin than at beam energies around 1 GeV/nucleon, although the mass yield has an almost identical slope

    Modelling the many-body dynamics of heavy ion collisions

    Get PDF
    Basic problems of the semiclassical microscopic modelling of strongly interacting systems are discussed within the framework of Quantum Molecular Dynamics (QMD). This model allows to study the influence of several types of nucleonic interactions on a large variety of observables and phenomena occur- ring in heavy ion collisions at relativistic energies. It is shown that the same predictions can be obtained with several numerically completely di erent and independently written programs as far as the same model parameters are employed and the same basic approximations are made. Many observ- ables are robust against variations of the details of the model assumptions used. Some of the physical results, however, depend also on rather technical parameters like the preparation of the initial configuration in phase space. This crucial problem is connected with the description of the ground state of single nuclei, which di ers among the various approaches. An outlook to an improved molecular dynamics scheme for heavy ion collisions is given

    Implementation of self-organizing neural networks for visuo-motorcontrol of an industrial robot

    Get PDF
    Walter JA, Schulten K. Implementation of self-organizing neural networks for visuo-motorcontrol of an industrial robot. IEEE Transactions on Neural Networks. 1993;4(1):86-96.The implementation of two neural network algorithms for visuo-motor control of an industrial robot (Puma 562) is reported. The first algorithm uses a vector quantization technique, the "neural-gas" network, together with an error correction scheme based on a Widrow-Hoff-type learning rule. The second algorithm employs an extended self-organizing feature map algorithm. Based on visual information provided by two cameras, the robot learns to position its end effector without an external teacher. Within only 3000 training steps, the robot-camera system is capable of reducing the positioning error of the robot's end effector to approximately 0.1% of the linear dimension of the work space. By employing adaptive feedback the robot succeeds in compensating not only slow calibration drifts, but also sudden changes in its geometry. Hardware aspects of the robot-camera system are discusse

    Hidden magnetic order in CuNCN

    Full text link
    We report a comprehensive experimental and theoretical study of the quasi-one-dimensional quantum magnet CuNCN. Based on magnetization measurements above room temperature as well as muon spin rotation and electron spin resonance measurements, we unequivocally establish the localized Cu+2-based magnetism and the magnetic transition around 70 K, both controversially discussed in the previous literature. Thermodynamic data conform to the uniform-spin-chain model with a nearest-neighbor intrachain coupling of about 2300 K, in remarkable agreement with the microscopic magnetic model based on density functional theory band-structure calculations. Using exact diagonalization and the coupled-cluster method, we derive a collinear antiferromagnetic order with a strongly reduced ordered moment of about 0.4 mu_B, indicating strong quantum fluctuations inherent to this quasi-one-dimensional spin system. We re-analyze the available neutron-scattering data, and conclude that they are not sufficient to resolve or disprove the magnetic order in CuNCN. By contrast, spectroscopic techniques indeed show signatures of long-range magnetic order below 70 K, yet with a rather broad distribution of internal field probed by implanted muons. We contemplate the possible structural origin of this effect and emphasize peculiar features of the microstructure studied with synchrotron powder x-ray diffraction.Comment: 17 pages, 17 figures, 1 tabl

    Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria

    Get PDF
    A nuclear encoded mitochondrial heat-shock protein hsp60 is required for the assembly into oligomeric complexes of proteins imported into the mitochondrial matrix. hsp60 is a member of the 'chaperonin' class of protein factors, which include the Escherichia coli groEL protein and the Rubisco subunit-binding protein of chloroplast

    Deglacial patterns of South Pacific overturning inferred from 231Pa and 230Th

    Get PDF
    The millennial‐scale variability of the Atlantic Meridional Overturning Circulation (AMOC) is well documented for the last glacial termination and beyond. Despite its importance for the climate system, the evolution of the South Pacific overturning circulation (SPOC) is by far less well understood. A recently published study highlights the potential applicability of the 231Pa/230Th‐proxy in the Pacific. Here, we present five sedimentary down‐core profiles of 231Pa/230Th‐ratios measured on a depth transect from the Pacific sector of the Southern Ocean to test this hypothesis using downcore records. Our data are consistent with an increase in SPOC as early as 20 ka that peaked during Heinrich Stadial 1. The timing indicates that the SPOC did not simply react to AMOC changes via the bipolar seesaw but were triggered via Southern Hemisphere processes

    Distinguishing hadronic cascades from hydrodynamic models in Pb(160 AGeV)+Pb reactions by impact parameter variation

    Get PDF
    We propose to study the impact parameter dependence of the anti-Lambda/anti-Proton ratio in Pb(160AGeV)+Pb reactions. The anti-Lambda/anti-Proton ratio is a sensible tool to distinguish between hadronic cascade models and hydrodynamical models, which incorporate a QGP phase transition

    Physics opportunities at RHIC and LHC

    Get PDF
    Nonequilibrium models (three-fluid hydrodynamics, UrQMD, and quark molecular dynamics) are used to discuss the uniqueness of often proposed experimental signatures for quark matter formation in relativistic heavy ion collisions from the SPS via RHIC to LHC. It is demonstrated that these models - although they do treat the most interesting early phase of the collisions quite differently (thermalizing QGP vs. coherent color fields with virtual particles) -- all yield a reasonable agreement with a large variety of the available heavy ion data. Hadron/hyperon yields, including J/Psi meson production/suppression, strange matter formation, dileptons, and directed flow (bounce-off and squeeze-out) are investigated. Observations of interesting phenomena in dense matter are reported. However, we emphasize the need for systematic future measurements to search for simultaneous irregularities in the excitation functions of several observables in order to come close to pinning the properties of hot, dense QCD matter from data. The role of future experiments with the STAR and ALICE detectors is pointed out

    Multifragmentation, fragment flow, and the nuclear equation of state

    Get PDF
    The quantum molecular dynamic method is used to study multifragmentation and fragment flow and their dependence on in-medium cross sections, momentum dependent interactions, and the nuclear equation of state, for collisions of 197Au+197Au and 93Nb+93Nb in the bombarding energy regime from 100 to 800A MeV. Time and impact parameter dependence of the fragment formation and their implications for the conjectured liquid-vapor phase transition are investigated. We find that the inclusive fragment mass distribution is independent of the equation of state and exhibits a power-law behavior Y(A)∼A-τ with an exponent τ≊-2.3. True multifragmentation events are found in central collisions for energies Elab∼30–200 MeV/nucleon. The associated light fragment (d,t,α) to proton ratios increase with the multiplicity of charged particles and decrease with energy, in agreement with recent experiments. The calculated absolute charged particle multiplicities, the multiplicities of intermediate mass (A>4) fragments, and their respective rapidity distributions do compare well with recent 4π data, but are quite insensitive to the equation of state. On the other hand, these quantities depend sensitively on the nucleon-nucleon scattering cross section, and can be used to determine σ experimentally. The transverse momentum flow of the complex fragments increases with the stiffness of the equation of state. Reduced (in-medium) n-n scattering cross sections reduce the fragment flow. Momentum dependent interactions increase the fragment flow. It is shown that the measured fragment flow at 200A MeV can be reproduced in the model. We find that also the increase of the px/A values with the fragment mass is in agreement with experiments. The calculated fragment flow is too small as compared to the plastic ball data, if a soft equation of state with in-medium corrections (momentum dependent interactions plus reduced cross sections) is employed. An alternative, most intriguing resolution of the puzzle about the stiffness of the equation of state could be an increase of the scattering cross sections due to precritical scattering in the vicinity of a phase transition
    • 

    corecore