2,424 research outputs found

    Electron-translation effects in heavy-ion scattering

    Get PDF
    The origin and importance of electron-translation effects within a molecular description of electronic excitations in heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation for the nuclear motion, a set of coupled differential equations for the occupation amplitudes of the molecular orbitals is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by additional matrix elements stemming from the electron translation. Hence, a molecular description of electronic excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is proposed, which for the first time should allow for the calculation of angular distributions for δ electrons. Finally, the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix elements for the Pb-Cm system and comparing the corresponding K-vacancy probabilities with conventional calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled-channel calculations

    Nuclear clusters as a probe for expansion flow in heavy ion reactions at 10-A/GeV - 15-A/GeV.

    Get PDF
    A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d,t and He are predicted for central Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD transport approach. Transverse expansion leads to a strong shoulderarm shape and di erent inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear bounce-o event shape is seen: the averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields particularly at low pt at midrapidities and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters and other hadrons

    K/Ï€ ratios in relativistic nuclear collisions : a signature for the quark-gluon plasma?

    Get PDF
    Collisions of Si(14.5A GeV+Au are investigated in the relativistic-quantum-molecular-dynamics approach. The calculated pseudorapidity distributions for central collisions compare well with recent experimental data, indicating a large degree of nuclear stopping and thermalization. Nevertheless, nonequilibrium effects play an important role in such complex multihadron reactions: They lead to a strong enhancement of the total kaon production cross sections, in good agreement with the experimental data, without requiring the formation of a deconfined quark-gluon plasma

    Anti-proton production and annihilation in nuclear collisions at 15-A/GeV

    Get PDF
    We present a calculation of antiproton yields in Si+Al and Si+Au collisions at 14.5A GeV in the framework of the relativistic quantum molecular dynamics approach (RQMD). Multistep processes lead to the formation of high-mass flux tubes. Their decay dominates the initial antibaryon yield. However, the subsequent annihilation in the surrounding baryon-rich matter suppresses the antiproton yield considerably: Two-thirds of all antibaryons are annihilated even for the light Si+Al system. Comparisons with preliminary data of the E802 experiment support this analysis

    Energy and baryon flow in nuclear collisions at 15-A-GeV

    Get PDF
    Strong correlations between baryon stopping in the projectile rapidity hemisphere and target excitation have been found in the light-ion-induced reactions at the BNL Alternating Gradient Synchrotron (AGS) (E814 group). Results in the framework of the relativistic molecular dynamics approach (RQMD) describe recent E814 data quite well. We discuss the RQMD results together with proton and pion data from the E802 group near midrapidity. They have raised the question of whether partial transparency could be seen in these experiments. The RQMD results indicate strong transverse baryon flow in central Si+Au collisions after the projectile has been stopped in the target

    Stability of massive objects in a new scalar-tensor theory

    Get PDF
    We define a new scalar-tensor theory with an effective gravitational coupling constant depending on a scalar field. The coupling is such that the gravitational interaction decreases with the strength of the scalar field. We show that this is not sufficient to prevent the gravitational collapse of sufficiently massive dense objects

    The Future of Theological Education within the European Baptist Federation

    Full text link
    If we speak about theological education in Europe, we still have to see this in the East - West context or conflict. I am aware that if I have to generalize you will have a lot of exceptions. But nevertheless I want to try to draw a line to where we are today and of course I want to reflect on the fifty years of the existence of International Baptist Theological Seminary (IBTS) and what has happened since the war. In the second part I want to give you some examples about issues which I think shall be the focus of theological education discussions in the future

    Social risks and statuspassages in life course: introduction to the first international symposium

    Full text link
    Das Arbeitspapier enthält den Eröffnungsvortrag eines internationalen Symposiums zu "Statuspassagen und Risikolagen im Lebenslauf". Das Forschungsprogramm des Sonderforschungsbereichs der Universität Bremen wird im Gesamtkonzept und anhand einzelner Forschungsprojekte vorgestellt. (IAB

    A Stopped delta-matter source in heavy ion collisions at 10-GeV/N?

    Get PDF
    We predict the formation of highly dense baryon-rich resonance matter in Au+Au collisions at AGS energies. The final pion yields show observable signs for resonance matter. The Delta1232 resonance is predicted to be the dominant source for pions of small transverse momenta. Rescattering e ects consecutive excitation and deexcitation of Delta's lead to a long apparent life- time (> 10 fm/c) and rather large volumina (several 100 fm3) of the Delta-matter state. Heavier baryon resonances prove to be crucial for reaction dynamics and particle production at AGS

    Possibility of detecting density isomers in high-density nuclear mach shock waves

    Get PDF
    Up to now no experimentally feasible method for detecting abnormal nuclear states has been known. We propose to observe them in high-energy heavy-ion collisions through the disappearance of, or irregularities in, high-density nuclear Mach shock phenomena
    • …
    corecore