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The origin and importance of electron-translation effects within a molecular description of electronic excitations in 
heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering 
process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is 
approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation 
for the nuclear motion, a Set of coupled differential equations for the occupation amplitudes of the molecular orbitals 
is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by 
additional matrix elements stemming from the electron translation. Hence, a molecular description of electroriic 
excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the 
conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum 
electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is 
proposed, which for the first time should allow for the calculation of angular distributions for 6 electrons. Finally, 
the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix 
elements for the Pb-Cm system and comparing the corresponding K-vacancy probabilities with conventional 
calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled- 
channel calculations. 

I. INTRODUCTION 

During the las t  years  a widespread interest  has 
developed concerning the excitations of the elec- 
tronic shells in collisions of very heavy ions and 
atoms. The reason for  that i s  that those excita- 
tion Cross sections allow us  to study the behavior 
of electrons in the very strong electromagnetic 
field of two highly charged nuclei approaching 
each other up to a few femtometers.  At the point 
of closest approach of, for  example, two uran- 
ium nuclei, the electrons of the inner shells for  
a short  time feel a strong quasimolecular field 
created by two sources with total charge Z„, 
= 184. This has a large influence on the electron- 
i c  charge distribution and binding energies. The 
inner-shell-electron wave functions a r e  strongly 
contracted, their binding energies strongly 
increase,  so  that the orbital velocity of those 
states becomes nearly equal to the velocity of 
light, and the binding energy can reach values of 
the order  of o r  even la rger  than twice the elec- 
tron res t  mass .  ' Because of the large orbital 
velocity compared to the relative velocity of the 
nuclei in the scattering process,  the inner-shell 
electrons behave to a good degree of approxima- 
tion adiabatically and form quasimolecular o r  - 
bitals. 3'4'5 Signatures for  the development of 
molecular orbitals have been experimentally found 
by studying the x-ray spectra.  6-11 A unique sig- 
nature for  the existence of K-shell binding ener-  
gies la rger  than 2rnoc2 in collisions with total 

chargeZ„, > 173 (Refs. 4 and 12) wouldbe the detec- 
tion of the decay of the neutral vacuum,13 i. e .  , 
the spontaneous filling of a K hole followed by 
emission of a positron ("spontaneous positron pro- 
duction"). However, due to the dynamics of the 
problem and the large kinetic energy of the nu- 
clear  relative motion, many other processes oc- 
cur which eventually lead to positron produc- 
tion. L"4 Therefore, separation of the contribution 
by the spontaneously produced positrons would re-  
quire an exact knowledge of all other excitation 
processes within the electron shell during the col- 
lision. 

To this end in the last  years extensive calcula- 
tions have been d ~ n e ' ~ " ~ " ~  where the excitations 
(including molecular radiative transitions) have 
been calculated by solving a s e t  of coupled differ- 
ential equations for the occupation amplitudes of 
the electron states.  These coupled-channel equa- 
tions a r e  obtained by f i r s t  decoupling the nuclear 
motion by treating i t  semiclassically. Then a 
time-dependent Dirac equation for  the electrons 
remains to be solved, the time dependence stem- 
ming from the time dependence of the internuclear 
distance given by the classical trajectory R(t): 

where 
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is the two-center-Dirac (TCD)+Hamiltonian for the by the ansatz 
two nuclei being_at a distance R(t) . Expanding the 
wave f u n c t i s  S(r, t) into the adiabatic molecular +(F, t) = C a,(t)~,(i ,  ~ ( t ) )  exp(-: en (~( t f ) )d t ' )  
basis V,(?, R) solving n 

(1.3) 
yields the well-known set  of coupled-channel equa- 

fi„,<F, R>,p,<, g )  = E~(R)~,(; ,  ER) (1.2) tions for the a,(t): 

Here the 8/9t couplins has been rewritten via the 
classical trajectory R(t) into a radial coupling 
R 8/aR and a rotational coupling i/Ew,J, (where J 
is the electronic angular-momentum operator). 
Cross sections may be calculated in terms of 
I a,(m) 1 2,  the asymptotic probability to find the 
electronic shell in state I p,). 

Unfortunately, this generally used method has 
a major disadvantage: the 8/8t coupling between 
the molecular states cp, does not vanish as R - W .  

Hence the asymptotic occupation probabilities 
1 an(-) 1 a re  ill defined. However, these asympto- 
tic 8/8t couplings are  clearly unphysical, as the 
interaction between the two ions vanishes asymp- 
totically. The reason for the spurious couplings 
was recognized already more than 20 years ago 
by Bates and ~ c ~ a r r o l l , ' ~  who realized that they 
a re  due to the fact that the adiabatic molecular 
basis states a re  calculated keeping the relative 
internuclear distance R fixed, whence the asymp- 
totic translation of the electrons with the escap- 
ing nuclei is not contained in this basis. There 
have been numerous attempts to solve this prob- 
lem17-20 using so-called classical electron-trans- 
lation factors (ETF) by which the molecular states 
were multiplied. However, all these attempts 
had serious defects (see Ref. 20 for a discussion), 
and only a new approach by Thorson and Delos," 
who gave up the ETF idea in favor of a nonlinear 
coordinate transformation leading to an electron- 
translation operator instead, finally led to a sat- 
isfactory treatment of the problem. 

In Sec. Ii we will review, slightly correct, and 
extend the work by Thorson and ~ e l o s ~ ~  to sys- 
tems where the electrons must be described rel- 
ativistically. No specification to one electron 
system will be made when setting up the theory. 
By semiclassical approximation of the nuclear 
motion (Sec. 111) we will derive a new set  of 
coupled-channel equations fo r  the occupation amp- 
litudes, which no longer contain any spurious 
asymptotic couplings and thus overcome the de- 

fects of Eq. (1.4). In Sec. IV we attack the prob- 
lem of describing relativistic continuum elec- 
trons in the field of two nuclei. Since the con- 
tinuum solutions of the two-center Dirac equa- 
tions are  not known, and even i f  we knew them 
our electron-translation-operator formalism 
could not succeed in asymptotically suppressing 
the continuum-continuum coupling, we circum- 
vent this problem by constructing another con- 
tinuum basis. This basis consists of wave pack- 
ets having the necessary localization properties 
to ensure the asymptotic vanishing of all coupling 
matrix elements. It allows for a description of 
all electrons (and positrons) with kinetic energy 
large enough to be able to leave the two nuclei 
within a time interval comparable to the collision 
time (-10-l9 sec). Thus we suggest a theory which 
for the first  time should allow us to calculate 
angular distributions of 6 electrons and positrons 
in collisions of very heavy systems. 

InJec. V we specify the switching function 
f(F, R) used for the actual calculation of the cor- 
rected matrix elements in the coupled-channel 
equations. In Sec. V1 finally we present results 
which show the influence of electron-translation 
effects on the K-hole amplitude in Pb-Cm col- 
lisions. Our main result will be that the natural 
cutoff of the 8/8t matrix elements by the electron- 
translation matrix elements takes place much 
farther outside (i. e . ,  at much larger internu- 
clear distances) than previously5'50 assumed. 

11. QUANTUM-MECHANICAL FORMULATION 
OF THE PROBLEM 

We want to describe a system of two nuclei 
(mass &IA, M, G MA; charge ZA, 2,) and Z' elec- 
trons. In Table I we define the reduced masses 
and coordinates of importance for the following. 
Some of the them a r e  depicted in Fig. 1. The 
mass asymmetry X satisfies the following iden- 
tities : define fA = -1, f, = 1, then we have 



TABLE I. Definitions of reduced masses and coordinates. 

Coordinates 

Ra C a )  - 1 
R , ~ = , ( M , R A +  M$!) 

Corresponding masses 

Cbord. of electron i in the " 0  Electron res t  mass 
laboratory system L 

Coord. of nucleus A (B) in L M A  B )  Rest mass of nucleus A ( B )  

Cbord. of center of mass of the M , = M A + M B  
nuclei (W) in L 

Total nuclear mass 

Coord. of CM in L M T = M A + M B + Z 1 m o  Total mass of the system 

Relative coordinate of the nuclei P=-  M A  M ,  
M A  + M B  

Reduced mass of the nuclei 

Coord. of electron i w.r.t. CMN 

Coord. of electron i w.r.t. nucleus A mA,!cL.25 " O+lMA 

MolecuPar reduced mass of the 
elec trons 

Reduced electron mass w.r.t. 
nucleus A 

Coord. of electron i w.r.t. nucleus B m o  M B  m B = -  Reduced electron mass w.r.t. 
m o + M ,  nucleus B 

Coord. of center of mass of ionA(B) M A  (B)=MA ( B ) +  Z A  @ ) m 0  Mass of ionA (B) ( Z ~ + Z ~ = Z ' )  

M A M B  
Relative distance of the two ions P A B ' ~  Reduced mass of the ions 

T 

Coord. of electron i w.r.t. CMA 
P A  = m " ' M ~ +  ( Z a -  l)mol Reduced electron mass w.r.t. CMA 

M A  

Cbord. of electron i w.r.t. C m  ,.IB = m o [ " ~ + ( z ~ - l ) m ~ l  Reduced electron mass w.r.t. CMB 
B 

h,-a Nuclear mass asymmetry 
M A  + M B  
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FIG. 1. Some of the coordinates used in this Paper. 

A. The total Hamiltonian 

Nonrelativisticaily, the total kinetic energy is 
given a s  a sum of the kinetic energy of the center 
of mass and the energy of the relative motion: 

-. (2.1) 
Here P and pi are  the momentum operators can- 
onically conjugate to the coordinates R and ;, . 

We now want to find out how (2.1) has to be sub- 
stituted if the electrons are  to be described as 
relativistic spinor fields, whereas the nuclear 
relative motion remains nonrelativistic. Let 
us choose a s  inertial system the CM system (F& 
=0)  and consider the classical expression for the 
total energy without interaction 

TABLE 11. Order of magnitude of the expansion param- 
eters in Eqs. (2.2) and (2.3). 

Proton-proton Pb-Pb 

-. 
where 3 is the canonically conjugate momen- 
tum of R A ,  etc. Expressing this in terms of -. 
P!, = 0, 5 and Pt and expanding with respect to 
the small entities (P2/2p)/MNc2 and mO/MN, we 
obtain 

The smallness of the expansion parameters can 
be visualized in Table I1 for collisions at the 
Coulomb barrier.  One clearly Sees that for heavy 
systems higher-order corrections in mo/MN can 
be neglected i f  one does not take into account sim- 
ultaneously relativistic corrections to the nu- 
clear relative motion. 

Now we may quantize (2.3). Describing the 
nuclear relative motion by a Schrödinger wave 
function and the electrons by Dirac spinors, we 
may write down 

where G"', P"' act on electron i. Adding the 
electrostatic interaction (magnetic field effects 
will be included later), the Hamiltonian becomes 

p2 -C = - + vAB (R) +H Zl(rl R). 
2 P 
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[ ~ ~ u a t i o n  (2.5) results  from a f irst-order S- 
matrix expansion-back reaction of the interac- 
tion on the kinetic energy via effective masses for  
the interacting particles, e tc . ,  and the resulting 
problems in defining the (CM) system a r e  neg- 
lected. Only under this assumption i s  quantiza- 
tion a s  in (2.4) justified. ] H;;(F, R) i s  the rela- 
tivistic molecular Hamiltonian for  the electrons 
Cr denotes the se t  F,}). It contains a s  a correc-  
tion to the two-center-Dirac Hamiltonian 

besides the electron-electron interaction another 
te rm which takes into account that the complete 
electron cloud may move with respect to the CM. 
This te rm i s  by a factor of r n o / M ,  smaller  than 
the electron kinetic energy. The nuclear rel- 
ative motion i s  governed by the nucleus-nucleus 
Coulomb potential v A B ( ~ ) .  

For  the purpose of later  use we want to state 
without proof the representation of H, in atomic 
coordinates. This can be easily evaluated by 
using Table I and the chain rule for  the momen- 
tum operators (see Ref. 21 for  the Same discus- 
sion for  nonrelativistic electrons): 

B. The wave function 

As the total energy E is conserved, the total 
system (two nuclei plus 2' electrons) i s  des- 
cribed by an eigenfunction of H: 

H ~ ,  ii)~('-, R) = E*(F, a) . (2.7) - 
*(F, R) contains the electronic motion a s  weil a s  
the nuclear relative motion. It may be expanded 
with respect  to a s e t  of electron eigenstates, _ 
for  example, moiecuiar eigenstates of H$,(:, R): 

+ 

H$,('-, R)<pn(?, = c,(R)<p,(?, G) . (2.8) 

For  asymmeti ic  systems (A#B)  the bound states 
of the molecular basis  for  H - W  go over into a 
product of wave functions localized around the 
two nuclei A, B (Ref. 20): 

<p,(F, 3)- W„(F~)<P~,(?B) . 
R- - (2.9) 

-. 
For symmetrical systems the <P,(?, R) additionally 
have good parity, and a certain combination of 
even and odd states has the property (2.9). This 
property i s  due to the fact that for R - W  an elec- 
t ron in ion A no longer feels ion B. This i s  not 
t rue for  continuum electrons; continuum energy 
eigenstates a r e  always spread over all space 
and always feel the potential of both nuclei. 
Therefore,  for  continuum electrons (2.9) will not 
hold. We will discuss this problem in Sec. IV. 

For  the following let  us  assume asymmetric 
syste-ms and that (2.9) be fulfilled. Expanding 
@(F, RR_! with respect  to the molecular basis  
<pnf i ,  R) (perturbated-stationary-state method), 
we find 

where contains the nuclear relative motion. 
Projecting out the molecular s tates q, would yield a 
s e t  of differential equations for X, which, by 
semiclassical approximation, would lead to the 
coupled-channel equations (1.4). This method, 
called "perturbated-stationary-state (PsS) meth- 
od, " thus leads to the various long-range coup- 
lings discussed in the introduction. We can now 
trace the reason for  ihat  to the fact that for 
tl - W  (vAB- 0 )  the x,(R) become eigenfunctions of 
p 2 / 2 p . ,  i.e., plane waves with a good momentum 
P: 

Physically, however, we expect the asymptotic 
relative motion to be that of two ions (not nuclei) 
moving apart, described by eigenfunctions of the 
momentum PAB cano+nically conjugate to the in- 
teratomic distance RAB : 

Obviously 3 is not the asymptotically correc t  
scattering coordinate. Therefore, i t  i s  convenient to 
use another mattering coordinate becoming RA. a s  
R -W. This idea i s  due to Mittleman and ~ a i  f 
They changed from the molecular basis  W,(?, R) 
to a new basis  <p,(F, s*) in such a way that in the 
expansion 

the in behaved asymptotically correctly: 
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M i t t l e m e  anCTai ~ x p r e s s e d  all wave functiozs 
through R* =R*(F, R) and thus had for  every R 
und for  every electron ~olifi~uration{?~} a new 
" m ~ l e c ~ l a r "  basis  qn(F, R) . We, however, will 
explicitly write out the coordinate transformation 

-R* and then be a b l e t o  continue to use the 
old se t  of coordinaies {R, F,} and hence the two- 
center  basis  p,E, R). Using the new scattering 
coordinate G* willthus result in additional easily 
calculable coupling matrix-elements between 
the molecular s tates pfi, R). 

We now se t  - - . - C  

R * = R + X ,  

and thus may write 

where T(2)  i s  a translation operator  

Fo r  constant we have the representation 
4 - S(g)= e ~ ~ R =  , ( i / f i ) X ~ ~  (2.18) 

-. -. 
In our c a s e ,  however, X will depend upon R (see  
below), and we have 

(summation over double indices is understood). 
The adjoint operator f t ( 2 )  is obtained by partial 
integration: 

Since the momentum operator 5 affects X, i s  
not unitary, i. e . , St(Xt) T(Z) l~ I .  

The reason for  this  nonunitarity i s  t ha iwe  
continue to express everything through (R, 7) and 
not through (R*, F). In particular, the volume 
element in the sca lar  produ$ d3R d 3 r l . .  . d3rz,, 
i s  kept unchanged. ~'(x)?(x) is nothing but the 
Jacobian Il8R/aR*Il,which we have to take into 
account explicitly. We could avoid this by in- 
troducina a new sca lar  product d3R* - 
xd  3 ~ , .  . . d3yZ3, but then we would have to r e -  
define all differential operators in the Harnilton- 
ian in order  to again obtain Hermiticity. 
Another consequence of f t f  # 1 is that the new 

coefficients 2, differ slightly from X, a s  functions. 
From the normalization condition for  *, 

we get, using (2.101, 

.+ 
X p,(?, ~ ) d ~ ~ l  d3r1 . . . d3r„ = C , (2.22) 

whereas (2.16) yields 

In iowest order (m/p )  Pt+ i s  a rea l  number (see  
Appendix A); hence, comparing (2.22) and (2.23), 
i t  follows that 

Equations (2.21)-(2.24) guarantee that the norm 
i_s conserved under the transformation in spite of 
T being nonunitary. Moreover, we recognize a s  
the proper transformation operator theunitary 
combination (see Appendix A) (F+S)-1 /2~.  Hence 
the completeness of the expansion of th: total 
wave function with respect  to the p,(r'; R*) is no 
problem. -. 

Th2 problem of ? not being unitary in case  X 
=X(R) was not correct ly recognized in Ref. 20. 
ThorsonAancJ Delos used the representation (2.18) 
and for  T'(x) they wrote e ( - ' / ' ' ~ ' ~ ,  9 being the 
momentum operator. Then they had = 1,  but 
their transformed Harniltonian was not Hermit- 
ian. Hermiticity they established afterwards by 
symmetrizing several  te rms,  thereby obtaining 
a slightly different result  than we do. Our re-  
sult will be fully consistent in order  m/p .  

We now a r e  going to calculate the translation 
vector X. 

+ 
C. The translation vector X 

The translation vector 2 is defined by two asymp- 
totic conditions: 

(i) For  R -0 we want to work in the molecular 
p i c t u r c  Hence in this limit the internuclear dis- 
tance R is the correc t  scattering coordinate. -. - .-. 

(ii) For  R - W, R* = R + X should become Ru, 
i. e . ,  the interatomic distance; this scattering 
coordinate takes into account the asymptotic t rans-  
lation of the electron with the two nuclei. 

4. 

For  the details of the calculation of X out of 
these boundary conditions we refer  to Ref. 20. 
The result is 
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-. - 
l im f ( r ,  R) = - X .  

-,R I r 4  
(2.27) 

with Condition (ii) l eads  to - - C. = f(;i,E)+~(--~ - f ( i „ a ) + ~  E). i im f ( ~ ,  R) = f, = +I, 
2 4 (2.26) .-mVo,R-o 

Here f (Fi, 8) is a so-called “switching function" l im f ( F , R ) = f a = -  1. (2.28b) 
K + m , r A /  R-W 

which is f r e e  up to the boundary conditions f o r  
R - 0 and R - =. Condition (i) is fulfilled by (X  Two choices fo r  f(? ,R) fulfilling (2.27) and (2.28) 
is the m a s s  asymmetry)  wil l  be discussed in Sec. V .  

D. The equations of nuclear relative motion 

lnser t ing (2.16) into the Schrödinger equation (2.7), we  obtain 

[H(?, E )  - ~]?(9fi,(6)<p,(~, 6 )  = 0 . 
n 

Multiplying f r o m  the left by 

[ r t < x ) ~ ( x ) ] l / z ~ - l ( x , ,  

using (2.24), and forming the  s c a l a r  product with <p;(F,R) yields 

We recognize that the coordinate t ransformation - R* can be rewri t ten a s  a unitary t ransformation on 
H(?, 6): 

H!(?, 3) = [ i i t ( Z ) F ( Z ) ~ l / ~  F-~(Z)H(F,  R)I;.(Z)[St(Z)T(x)]-1l2 . (2.31) 

Hence (2.30) has the  Same s t ruc ture  a s  in  the PSS 
theory;  however, H is substituted by H'. H' cannot 
be given in closed form.  However, a s  is gen- 
erated by the s m a l l  vector  ?t = ( i i z / p ) ~ ~ ~ S i ,  we  
may expand H'(F,R) with respec t  to  m / p .  As we 
saw in Sec. II.A, the opera tor  H is only consistent 
in lowest-order  m / p  because we  used the  nonrela- 
tivistic approximation f o r  the nuclear  relat ive mo- 
tion. Hence, in o r d e r  t o  s tay consistent,  we  
should drop  a l l  t e r m s  -(m/y)", $2 2 2 in the expan- 
s ion.  In addition, we shal l  a s s u m e  that the switch- 
ing function is s o  smooth that w e  may safely d rop  
t e r m s  -(m/p)grad, f and -(rn/p)grad, f .  This  
considerably simplifies the expression f o r  H'. 
[ F o r  a sudden change of the basis  (e.g., f jumps 
f r o m  0 t o  4 at  a ce r ta in  dis tance) ,  t h e r e  may oc- 
cur  e r r o r s  on the o r d e r  of m / p .  We will  See, 
however, that as long a s  f i s  smooth a s  a function 
of F, the  essent ial  correct ions Am a r e  not af- 
fected.] 

F o r  the detai ls  of the  calculation we  r e f e r  t o  
Appendix A. F o r  the t ransformed Haniiltonian 

I 

one obtains in  o r d e r  nl /p:  

where  A is the difference between t ransformed and 
old potential: 

The operator  Ä is defined by 

F r o m  (2.30) we thus find 
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which may easily be  evaluated to 

Here ( I )„ = 6„ = (m 1 n) i s  the unit matrix; the substitution 5 - P + Ä. All other corrections - 
(E),,,, = (m I 5 I n) (2. 37) a r e  smal ler  by an or%rVm/p The important 

poif i s  that whereas P does not vanish fo r  R - *, - 
a r e  the matrix elements of the momentum operator E+& d0e.s: 
P between the molecular basis  s tates (which turns -. -. 

out to be just the usual dynamical coupling); lim (P„ +Am,) = 0 . (2.41) 
R- -. 

(A)~,, = (m I Ä I n) (2.38) Hence the correction matrix elements due to elec- - 

tron translation asymptotically cancel the spurious will become the corrections of the dynamical coup- 
ling due to the electron translation; and dynamical couplings . 

The proof of (2.41) i s  not difficult in the case  of 
(&I„ ' (m 1 A(F, Rf) I n) . (2.39) nonrelativistic electronic m ~ t i o n , ' ~  using that one 

Comparing the result  (2.36) with the correspond- of the two s ta tes  involved'obeys (2.9) .  We now 

ing equation from the PSS theory, want to sketch the slightly more  involved reasoning 
for  the case  of relativistic electrons ,which also -. C ($('.1+9:rz will be  of use later  in Sec. IV. 

Let u s f i r s t  express the molecular Ha_miltonian 
Hm„(F, R )  in t e rms  of atomic momenta P„, ?tA, 

+ (VAB +E, - E)6„ x,(R) = 0 ,  ) -. 
(2.40) ?tB. (This i s  achieved by using Table I for  the 

coordinates and applying the chain rule for  the 
we will s e e  that the really essential difference i s  differential operators $TA , etc .) We obtain 

Z ' ~  Z'A 2 

H.' mal ( r ,F i )= [g i a ( i )  .P:,c + p(i)m,~2 + V e ~ 4 ~ ) ]  +l C veet I ii - F, ) -&(& a $ ] + [ ~  - B I  
1.1' i V 

H::„ is just the atomic Hamiltonian [See (2.6)] for  the case  where the molecule dissociates into two ions 
with ZA and 2; electrons. If we neglect the smal l  corrections due to the fact that veA depends on F„ (dis- 
tance to nucleus A )  instead of F?, (distance to the center  of mass  of ion A) ,  H„ in the asymptotic channel 
contains [up to order  (m/p)2] only one correction which depends on the atomic distance RAB: 

[This te rm is the relativistic analog to the recoil t e rm,  consideredinRefs. 22(a)and22(b) which occurs  in a 
treatment of ion s c a t t e r i ~ g  in a n  atomic basis  and is given in a somewhat different formSn Ref. 23.1 Com- 
paring this to ( 1 / 2 p ) ( ~ ,  P} we easily s ee  that both t e rms  asymptotically yield the Same PAB coupling: 
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Indeed, ( 1 / 2 p ) { Ä ,  $1 yields a l l  th ree  underlined t e r m s  of ( 2 . 4 2 ) .  ThuS we have shown that 

1 - -  el 
H ; : o r n + - { ~ , p ) +  V% -~a to rn -H$  + O ( m / i r ) .  

2F R-W 

where V „  - V::„ is the interaction of the electrons in  A with nucleus B, and vice versa .  
Equivalently , 

p2 p2 AB 1 
H = - + V * ~ ( R ) + H „ - - + V  2  F R-4 -  2li ( R ) + H ; ~ ~ , + - ~ A , P ~ + V ~ - V : : ~ ~ + O ( ~ ) .  2  ir ( 2 . 4 6 )  

I 
-- 

Comparing this with the representat ion of H  i n  plings remain. In Sec. IV we sha l l  show how to 
atomic coordinates [ s e e  ( 2 . 6 ) ] ,  avoid this  problem. 

we thus have proved that 

z o r  bound s t a t e s  with the property ( 2 . 9 ) ,  however, 
P „  does not act  on the electron wave function for  
R - m, and thus the  spurious long-range dynamical 
couplings vanish, a s  they should accord ing to  t$e 
idea behind the  coordinate t ransformation R - R* . 

Once again we Want to  s t r e s s  that this  is not t r u e  
f o r  continuum s ta tes .  In that c a s e  the interaction 
V:„ - V::„ does not vanish for  R - a, and due to 
the  interaction of the electrons with both cen te rs  
even f o r  R -=J, t h e s e p a r a t i o n  property ( 2 . 9 )  is 
destroyed. Hence P „  a l so  for  R - W  ac t s  on the 
electron wave function, and the long-range cou- 

I 

E. Transformation to rotating coordinates 

The equations of motion ( 2 . 3 6 )  contain couplings 
by the relative momentum of the two nuclei - + 
P = %V,. V ,  means  differentiation with respect  
to  keeping the electron coordinates :i in 
the center  of m a s s  sys tem of the nuclei CMN s y s -  
t em)  fixed. On tJhe o ther  hand, the electron wave 
functions R) a r e  most  easily calculated in a 
coordinate s p t e m  which rotates  with the internu- 
c l e a r  ax i s  R. In this  sys tem,  where the electron 
coordinates a r e  F;, +J,,,(; ', R )  only depends upon 
the distance R  of the nuclei,  and no longer on the 
orientation of the  vector  G. Therefore ,  we will 
t ransform the equations of motion ( 2 . 3 6 )  into this  
rotating coordinate system. In Order t o  do s_o we 
have to substitute al l  differential opera tors  V„ 
keeping F fixed, into differential opera tors ,  keep- 
ing F' fixed. The calculation is analogous to  Ref. 
20 and may be found in detail  in Ref. 24. We make 
use of 

1 cotß + - J , ,  - - 

where  J,, , J,, , J, ,  a r e  the components of the elec-  H e r e  h , E  is the eigenvalue of cpn(Tt ,R)  with respect  
t ron  angular-momentum opera tor  in the rotating t o  J„. Making the ansatz 
coordinate sys tem.  Hence [ In%) = 1 p m ( F t , ~ ) ) ]  

F,,,, epZn = ( m  1 - iEaR In) , 

1 Ehn cot6 a r e  the eigenfunctions of the angular par t  of F 2 ,  and 
=-(m ]Jfl 1 % )  - ~ 6 „  

R  ( 2 ' 5 0 )  projecting out X:;~(B, q), one o b t a i n ~ ~ ~ ' ~ ~  
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1 
+-(&,+Q~;+)+Q",-) C:~F:(R)=O. 

1) 
(2.5 3) 

2 P 

Here  K(K + l )F i2 /2p~2  is the angular momentum b a r r i e r  due to  the rotation of the internuclear axis;  

AR - Z' 
-. 

„ = A m ,  Amn GA$,, , and A ~ = A $ ,  a r e  the three  components of the mat r jx  vector Am,, in the rotating co- 
ofdinate sys tem;  they will be given explicitly in Eq. (3.29). 

We will est imate the relative order  of magnitude of the different t e r m s  in (2.53) below. It will tu rn  out 
that the essential  couplings between the molecular s ta tes  a r e  the modified radial coupling ( P : + A ~ )  and 
the modified rotational coupling ~ $ 2 ' .  In part icular ,  

i s  the well-known radial coupling, corrected by a matrix element of the R component of the translation 
vector  %[(2.25), (2.26)]. Q:;' for An <<K approaches 

i.e., the old rotational coupling J.?, corrected by a matr ix element of X, too. Equation (2.53) may be 
rew ritten as 

where kind, however, a r e  s rna1~ ,2~  and we will not con- 
s ider  them further. 

i 
D„=, ( p m n + A k ) ,  (2.59) The right-hand side of (2.58) describes the back 

reaction of electronic excitations on the nuclear 
1 Z P  1 (Rutherford) trajectory. The equations a r e  dia- 

B..=$(- Am.+ - ":.+B".)>, 
E 2  ( gonal in the total angular momentum K and i t s  

(2.60) projection M with respect to R, because both quan- 
t i t ies  a r e  conserved and not affected by excita- 

and tions of the  electron shell.  
2 P K(K +1) k: (R) zF[E - t0(R) - v A B ( ~ ) ]  -- 

R~ . n ~ .  THE SEMICLASSICAL APPROXIMATION OF THE 
(2 51) NUCLEAR RELATIVE MOTION 

Here ,  eO(R) is a mean binding energy of the elec-  
t rons  independent of the i r  state. In general  one 
s e t s  e,(R) = O ;  then k:(R) corresponds to a Ruther- 
ford trajectory.  Deviations of the nuclear t r a -  
jectory from the Rutherford case  due to  the vary-  
ing part  of the total energy going into electronic 
binding energyZ6 may be considered he re  by intro- 
ducing a convenient function E,,(R). Effects of this  

Any numerical solution of the quantum mechani- 
cal  equations (2.58) would require taking into ac-  
count many electronic s ta tes  and, in general ,  even 
much more  total angular momenta K. F o r  heavy 
sys tems this  will be completely impracticable. 
On the other hand, we expect that for  heavy sys-  
tems the nuclei will move along classical  Ruther- 
ford trajectories  without being much influenced by 



the electronic excitations. Thus the nuclear  t r a -  F f " ( ~ )  % C ~ ' " F ~ ( R )  
jectory will to  good degree of approximation be 
independent upon the s t a t e  of the electron shel l  
and only be  determined by the total energy and 
total  angular momentum. This  approximation for  - a ~ u i - )  ( ~ ) ~ - ( i / h ) ( S ~ +  Y,,)-in14 

n 
the  nuclear  t ra jectory is obtained by applying the 

1 9  

Jeff reys-Wentzel-Kramers -Brillouin (JWKB) ap-  where (3.2) 
proximation to Eqs. (2.58). This  will be  done in 
the following sect ion using the methods of Refs. ~ . = s ~ - s ~ = L ;  a[kn(R I )  -k0(R ' ) ]dR ' ,  (3.3) 
27 and 28. 

2 2/J kn(R)=-g [E -E,(R) - vAB(R)] - K ( K  + 1) 
A. The JWKB approximation R 2  . (3.4) 

Setting the right-hand s ide  of (2.58) equal to  
Zero,  the JWKB solutions a r e  

H e r e ,  Ra  is the c lass ica l  turning point of the 
nuclei,  where  ko(R) becomes imaginary. (i) de- 
notes (out-,in-) going JWKB waves. The t e r m s  
*in/4 in  the exponent provide the c o r r e c t  adjust- 
ment a t  the  point of c losest  approach.28'29 

Now the  full  solutions of (2.58) may be  expanded 
into this  complete s e t  of f r e e  JWKB waves. Then 
the dynamics of the expansion coefficients will be 
determined by the right-hand s ide  of (2.58), i.e., 
the electronic  excitations. We s e t  

It is easy to show that 

One of the two parameters  aYf"(F2) in (3.2) can be  
eliminated b y demandingZ7 

which el iminates  a l l  second derivatives of a:(*) 
in  the equations of motion. 

We now inser t  the ansatz (3.2) into (2.58), ex- 
pand in t e r m s  of E (semiclassical  approximation), 
and neglect a l l  t e r m s  containing strongly osci l la t -  
ing phase f a c t ~ r s . ~ " ~ ~  Then the equations of mo- 
tion separa te  into two s e t s  of equations for  
a n M (  +) (R ) an,j aKIf(  -1 (R) (Ref .27) :  

2iEj rn aKM'+)'  rn = C ( 2 p 3  m n +  a2~m)an.M(+) exp 
n 

where the pr ime  denotes derivative with respec t  to R ;  Pm = Pikm and firn,, = - iFiD„. 

B. The time-dependent coupled-channel equations 

afiM(+) is the coefficient of the outgoing JWKB wave. Define i n  the outgoing channel 

This  specifies a c lass ica l  t ra jectory ~ ( t ) .  Now (3.7) may be rewri t ten into a time-dependent s e t  of equa- 
tions: 

where 

B„ = ( t22 /2p)~m, , .  

F o r  the ingoing channel we define 
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so that (3.8) becomes 

In o r d e r  to get  a regu la r  function a t  R =&(t = 0 )  we demand27*28 

(t = 0 )  = aKM(-) ( t  = 0 )  . 
Hence we may define 

a" (t) = 
um(-) ( t )  , t G 0 

i n  o r d e r  to get  

i 
(1) = - L (sgn(t) D _  + B r n , , ) a ~  (f) exp  (- (L" - c,,,)dt') . 

E P m  n 

Below we will show that these  coupled-channel 
equations a r e  very  s i m i l a r  to  the ones obtained 
f r o m  PSS theory. However, they contain cor rec-  
tions which just cancel  the unwanted spurious,  
long-range couplings of the PSS theory . Thus w e  
have derived f r o m  a consistent yuantum-mechani- 
cal t rea tment  of the  scat ter ing problem the  c o r r e c t  
coupled-channel equations f o r  the electronic  oc- 
cupation amplitudes by applying the semic lass ica l  
approximation. 

Before proving this s ta tement  in detai l ,  we want 
t o  d i scuss  , short ly ,  the s t r u c t u r e  of Eqs .  (3.16). 
arft,,) is interpreted a s  the amplitude f o r  the s i tu-  
ation that  i n  a scat ter ing process  with total energy 
E and total angular  momentum K (i.e. ,  with a given 
impact  p a r a m e t e r  b )  and a given projection M the 
electrons a r e  in s t a t e  <p,(F, ~ ( t , ) )  a t  t ime  t = t o .  
These  amplitudes a r e  determined by a l l  other  a m -  
plitudes a t  a l l  t imes  St,. In par t i cu la r ,  excita- 
tions during the ingoing channel will  interfere  with 
excitations in the  outgoing channel.  This  complete 
coherence contained in (3.16)  is due to the JWKB 
approximation. We have expanded with respec t  
to JWKB waves with definite energy E ,  which 
therefore a r e  spread  over  a l l  values of R ( i .e . ,  
over  the  whole t rajectory) .  In o r d e r  to  destroy 
the coherence,  we should have to expand with r e -  
spec t  t o  localized wave packets f o r  the nuclear  
motion . Our derivation, however , yields com- 
plete coherence.  

Finally, w e  want to  s a y  a few words  about the 
validity of the JWKB approximation. Using the 
well-known c r i t e r i ~ n ~ ~ p ~ ~  

I 

one can ~ h o w ~ ~  that this is t r u e  f o r  

X-2/3, EK s m a l l  (3.18) 

where  

is the Sommerfeld p a r a m e t e r ,  which f o r  Pb-Pb  
collisions a t  V = 0 .  l c  ( E „  = 4 . 7  MeV/amu) 1s X 
G 490. In such a collision the JWKB approxima- 
tion b r e a k s  down a t  R - R, 2 0 .015  R,, which is of 
the o rder  of 0 .2  f m .  The e r r o r s  due to  this  
breakdown of the classical  t ra jec tory  picture n e a r  
the c lass ica l  turning point i n  t h e  calculation of the 
amplitudes afM(t) may  be  safely neglected. 

C. Comparison with PSS theory 

We now will compare  Eq.  (3.16)  with the c o r r e s -  
ponding resu l t  (1 .4)  of PSS theory .  Note that  

U=& I + O  =sgn(t)R(t) 1 + 0  - . 
Po, !J [ ( J 1  i (31 

(3.21) 

The correct ions - m / p  a r e  due to the assumption 
of a unique c lass ica l  t ra jec tory  (independent of the 
electronic  s ta te ) ;  in  rea l i ty ,  s y s t e m s  in different 
e lectronic  s t a t e s  move on slightly different t r a -  
jector ies .  This  effect in (3.16) shows up a s  addi- 
tional couplings . Neglecting these  cor rec t ions  and 
dropping the indices K and M, we obtain f r o m  
(3.16) and (2.59) 
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where  

Hence the radial  coupling Ra, of PSS theory is contained in our  theory a s  well ,  cor rec ted ,  however, by 
the t e r m  R(~/E)A;, . Since,  according to our  considerations in Sec.  I I D ,  the s u m  (a,)„ + (i/&)A& asymp- 
totically vanishes,  our  theory does not contain any spurious long-range radial  couplings. Now let us  
study the four  couplings generated by 

and compare them in their  o r d e r  of magnitude with the radial  coupling 

and hence (1/2 P)(?+ - AR):, a r e  by a n  o r d e r  m / p  smal le r  than (3.25) 

The l a s t  t e r m  i s  of the o r d e r  of (3.26) .  The other  t e r m s  a r e  of the o r d e r  J : / ~ P R ~ < < I . ~ ~ / ~ ~ R ~ ,  which is 
much s m a l l e r  than the coriol is  coupling Q:,(.) given below in (3.27), s ince the electron angular momentum 
J, is much s m a l l e r  than the total angular momentum I. ( ~ ~ 5  10E, whereas in Pb-Pb collisions a t  the 
Coulomb b a r r i e r  I -  100-1000E.) 

(iii) Froin (2.57) we  know that  &:F' is the modified rotational coupling which is of the o r d e r  

(iv) amn = (m I V(?,  

+ 
Splitting V(?, R)  into vAB(R) + V„(?, G) and using ?,V;:, = V,H„ and 

A m  can be  rewri t ten a s  

By the Hellman-Feynman theorem,  
i + 

(k  I G,H„ I n) = ~ J ~ O , E ,  +%(E, - ek)pRrl , 

we find 

The second t e r m  i s  of o r d e r  (3.26), which i s  s m a l l  compared to the radial  coupling. According to the 
Hellman-Feynman theorem,  the  very f i r s t  t e r m  i s  $f the Same o r d e r  of magnitude. Since the electron 
binding energ ies  roughly vary  l ike VAB, the t e r m  -vRvAB i s  a l so  of this o r d e r .  Hence A„ i s  s m a l l  com- 
pared to the radial  coupling (3.25).  

Taking into account only those t e r m s  of Brnn which a r e  comparable to  the radial  coupling, and neglecting 
t e r m s  s m a l l e r  by a fac tor  m / p  o r  J,/I, the coupled-channel equations read 



23 - E L E C T R O N - T R A N S L A T I O N  E F F E C T S  I N  H E A V Y - I O N  . . .  

To this order the only corrections to PSS theory a r e  matrix elements of the translation vector 2: - i ... 
Am P(E, -€,Km I X  1%) . (3.35) 

They a re  not hard to calculate if the molecular wave functions a re  known. On the other hand, we can con- 
tinue using the tabulated molecul.ar wave functions q m ,  the radial and rotational coupling matrix elements 
of PSS theory .5,21*30 This is  the essential advantage of this approach, a s  was f i rs t  pointed out by Thorson 
and Delos .'O 

D. The cross section in the semiclassical approximation 

From (3.2) one can calculate the amplitude for the electrons being scattered from state m, to state n in 
a collision with total angular momentum &,M). If for t -  -W the electrons were in state V,,, we would 
have 

dM ( t  z -W) = a r  ( - ) (R  = W )  = tjmmo. (3.36) 

Hence 

where we have introduced the phase shift 

Following Ref. 27, we may read off the scattering 
matrix element in the rotating basis: 

The total cross  section in the laboratory system 
(i.e., nonrotating system) is obtained from (3.39) 
by multiplying with the angular eigenfunctions 
x~~,~,x, , ,  averaging over M ,  summing over all 
K,  and taking the Square. We will not present the 
explicit calculation which is  done by rewriting the 
sum over K into an integral and applying the sad- 
dle-point m e t h ~ d . ~ ~ ' ~ ~  The saddle point K, lies in 
the neighborhood of the value K corresponding to 
the scattering angle 8 via the classical Rutherford 
trajectory. The deviations a re  the smaller,  the 
larger K, is .  Since, for large K,, the contribu- 
tions from angular momenta neighboring K, very 
soon interfere destructively, the saddle point is  
the sharper the larger K,. Thus for large K, the 
integrand is only different from Zero in a region 
where atM(m) only slightly varies. Therefore, 

can be written in front of the K integral. The re-  
maining integral does not contain any amplitudes 
g M ( m ) ,  but only contributions from the nuclear 
trajectory, and hence just yields the Rutherford 
cross section due to the JWKB approximation 
[ res~ec t ive l i ,  if E,(R)P 0, a modified Rutherford 
cross  sectionZ6]. As a result we have 

where a = (P/~E)Z,Z, e2 and a: is  the M -averaged 
amplitude. We wish to s t ress  that this derivation 
not only makes use of the JWKB approximation, 
but in addition assumes that the total angular mo- 
mentum of the nuclear trajectory is very large. 
This is  not true for proton-hydrogen collisions at 
energies -500 eV although the Sommerfeld para- 
meter i s  large. In this case (3.40) leads to wrong 
r e s ~ l t s . ~ ~  

IV. HOW T 0  DESCRIBE CONTINUUM ELECTRONS 

From the derivations of Sets; I1 and I11 it fol- 
lows that the matrix elements Am asymptotically 
cancel the spurious d ynamical couplings only if 
one or both of the two states Y,,, ym for R - 03 sep- 
arate into a product of atomic states accordingJo 
Eq. (2.9). [ ~ e c a u s e  of the Hermiticity of H / ( ~ , R )  
it suffices, if (2.9) is  true for one of the two 
states.] All bound states (i.e., all states not con- 
taining an electron with / E  / m0c2) fulfill this con- 
dition because they asymptotically become local- 
ized around the nuclei, whereas the essential in- 
teraction between the ions vanishes. On the other 
hand, one easily realizes that continuum electrons 
in an energy eigenstate do not possess this proper- 
ty (2.9); the corresponding wavefunctions (for ex- 
ample, two-center Coulomb wavefunctions with an 
energy LW) are  spread over all  space with an 
amplitude decaying only as  l/r as  Y - W .  There- 
fore, these wavefunctions, even for a Single elec- 
tron, always feel the potential of both nuclei, i.e., 
the asymptotic Coulomb phase shift depends upon 



both nuclear fields and, in particular, upon the 
distance R between the two n ~ c l e i . ~ '  The two- 
center Coulomb waves therefore will never be ex- 
pressible in t e rms  of F*, o r  5; aJone,+but only a s  
a function of both, and hence of R or RAB, respec- 
tively. This is  the reason for Pm,, couplings be- 
tween the Coulomb waves which cannot be sup- 
pressed by our translation matrix elements Am,,. 

Hence for continuum electrons our idea with the 
electron translation operator does not work. On 
the other hand, physical intuition tells us that the 
continuum electrons (moving already with nearly 
the velocity of light for kinetic energies 2 10 keV) 
will quickly leave the region of influence by the 
two-center potential. Therefore,  no asymptotic 
excitations should occur. Obviously, the two- 
center basis i s  not appropriate to describe this 
behavior. The elementary reason i s  that elec- 
trons leaving the interaction region must be des - 
cribed by spatially localized wave packets instead 
of Coulomb waves which a r e  spread over all 
space. Using a basis of wave packets, we may 
hope to escape the asymptotic couplings. 

Unfortunately, the construction of such a basis 
i s  not at  al l  elementary. F i rs t  of al l ,  there exist 
no continuum solutions of the two-center Dirac 
equation in the literature from which we could 
construct our wave packets. Furthermore,  i t  
turns out to be rather difficult to construct a com- 
plete orthogonal basis with the desired localiza- 
tion properties. Therefore,  we will not use the 
two-center continuum, but consider a s impler  pos- 
sibility. We shall use a basis which by construc- 
tion asymptotically approaches an atomic contin- 
uum basis  and thus avoids the problem of spuri-  
ous long-range couplings. We only have to show 
that in this basis  al l  other coupling matrix ele- 
ments a r e  finite and vanish for  R -rn. Questions 
of completeness will be considered too. 

Before going into the detai ls ,  let us express 

some words of motivation. Why a r e  we interested 
in such a thorough description of the continuum? 
As calculations by Soff, Reinhardt , and 
~ t h e r ~ ~ ~ ' ~ ~ * ~ ~  showed , a much simpler treatment 
i s  sufficient to describe ionization Cross sec-  
tions3' and energy spectra of 6 e l e ~ t r o n s . ~ ~ ' ~ ~  
However, there i s  one measurable entity which 
cannot be obtained with the monopole approxima- 
tion for the two-center potential used by these 
authors, i.e., the angular distribution of 6 elec- 
t r ~ n s . ~ " ~ ~  In order  to be able to compare this 
entity in theory and experiment, an exact theoret- 
ical treatment of the continuum in the field of two 
nuclei becomes necessary. In Sec. IV E we will 
show how within the framework to be presented 
below angular distributions of 6 electrons may be 
calculated. 

A. The basis for the continuum electrons 

In the following formulation, bound and continu- 
um electrons will be described by different basis 
se ts .  Whereas for the bound electrons we shall 
use the molecular basis for which we developed 
the translation-operator formalism , the continu- 
um electrons will be treated in a new quasiatomic 
basis which for R - approaches an atomic basis  
around nucleus A (B) and for which, therefore, 
the application of translation operators i s  not nec- 
essary.  Of Course, the new basis will not be or -  
thogonal on the molecular bound states and, in ad- 
dition, there will occur further coupling matrix 
elements from the two-center potential. All these 
points will be studied. 

In order to be able to split the electron config- 
uration into a bound part  and a continuum part ,  
we must neglect the recoil te rm (1/2MN) a s  
well a s  the nondiagonal part  of the electron inter- 
action. Then the electron configuration may be 
written a s  a Slater determinant: 

Here, a is  the antisymmetrization opetator ,  K i s  
the number of bound electrons, qmi (Fi; R) a r e  bound 
molecular one-electron s ta teswi th  energies 
I ci(R)I< rnoc2, and the qwi(Fi ;R) a re  the one-elec- 
tron continuum states with energies I Eui I nzocZ 
to be specified now. 

For the construction of the continuum basis we 
applied the following cr i te r ia .  In order to guaran- 
tee asyinptotically the property (2.9) i t  would be 
simplest to choose wave functions & which in the 
limit R - W  become atomic (one-center) Coulomb 
waves around nucleus A o r  B. In the molecular 

I 

limit, however, the electrons should feel the total 
nuclear charge ZA+ZB. Furthermore, in order to 
avoid undesired couplings in the molecular limit 
by the potential of nucleus B ,  if i s  a continuum 
state around nucleus A ,  the quasiatomic potential 
generating gw should be located in the nuclear 
center of mass  F= 0 for R - 0. In that case,  for 
R - 0 the 6, a r e  quasiatomic monopole waves for 
ZA+ZB, and there only remain coupling matrix 
elements due to the higher multipole contributions 
of the two-center potential. 

For the following we must specify whether the 
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& asymptotically belong to nucleus A o r  B. Since 
all electrons (positrons) with energy not too little 
above I Rw I = m,c2 quickly leave the region of inter- 
action with the two nuclei, this choice should not 
influence the results too strongly. Thus we arbi- 
trarily choose nucleus A:  

r i A ( c , ~ ) = S .  p,,c+ßmoc2+ V(P),  (4.2) 

where 

r ,  for R -  0 

; = F - ~ ( R ) ? ~ -  (4.3) 

and 

- F,= - iEV, is the canonically conjugate momen- 
tum for;. The potential V(p) for R - 0 contains the 
monopole part  of the two-center potential (as 
used by Soff and Reinhardt5*14*15) up to small  
te rms stemming from the mass  asymmetry and 
remaining finite. [~qua t ion  (4.4) for R - 0 yields 
the monopole part of the two-center potential for 
point nuclei. In order to get for small  R the mono- 
pole part for extended nuclei; g(R) may be de- 
fined a p p r ~ ~ r i a t e l y . ]  In Fig. 2 the definition of 

FIG. 2. The quasiatomic potential 9 ( p )  generating the 
quasiatomic continuum basis Pu, schematically depicted 
for different nuclear distances R. 

v(p)  i s  demonstrated pictorially. 
The functions g(R),  g(R) a re  to obey the boundary 

conditions: 

NI g(R )- 0; g(R 1- -- 
R- 0 R - r a  

(4.5) 

Z(R)- 1;  Z ( R ) d  0 .  
R+ 0 R - r -  

(4.6) 

As a continuum basis we choose the eigenstates 
of  BA(;,^): 

H A ( P , ~ ) + O ( P , ~ ) = t t w + W ( ; , ~ ) ;  I ~ w l >  moc2. 

(4.7) 

These a r e  usual relativistic one-center Coulomb 
wavefunctions Their  asymptotic behavior i s  
given by [6,(p, W )  i s  the logarithmically increasing 
Coulomb phase]: 

Hence 4; oscillates with a wavelength AG 22ne 
= 2426 fm and with an amplitude decreasing like 
l /p.  This decrease of the amplitude, however, is 
too weak to make the interaction of with the 
potential of nucleus B vanish for R - * . In order 
to achieve the latter, we must construct wave 
packets from the which decay faster  than l/p. 
In general such a wave packet reads a s  follows: 

This is not an eigenstate of HA; i t s  mean energy i s  
given by 

The a re  normalized to 6(w - W'); thus the nor- 
malization relation for the *, reads a s  

This condition is  easily satisfied by the so-called 
Weyl packets: 

if for different states the energy intervals a r e  
chosen disjoint, I E' -E IatiAw. Then, however, 
the Weyl packets a re  no longer complete, since 
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c c  *,(w)c,(wl)# 6(w - W!) . (4.13) 
E 

We will discuss below the practical importance of 
this incompleteness. 

The amplitude of the Weyl packets q ,  decay like 
llp2 (see Sec. IVC). This turns out to be suffi- 
cient to make the couplings with the other nucleus 
vanish for  R - a. 

In Fig. 3 we show a wave packet which we ob- 
tained numerically by superimposing one-center 
Coulomb waves according to (4.12). The mean en- 
ergy of the packet i s  2.15 m,c2; i ts  width ZAw 
= 0.30 m0c2. The energy integral was done by 
12-point Gauss integration. The relative numeri- 

1 2 
I -L.-LLL --& 

cal  e r r o r  i s  everywhere less  than 10-4. One rea l -  3 p( io4frn)  

izes the l / p  decrease of the amplitude of in 
the figure; i.e., the wave packet falls off like l /p2 FIG. 3.  A wave packet with a mean energy E=2.15mocz  
a s  it should do. and a width AE = 0.30moc2. 

B. The modified coupled-channel equations 

We now investigate the consequences arising from the use of two basis systems for bound and continuum 
electrons on the structure of the coupled-channel equations. 

We begin by expretsing the Hamiltonian (as fa r  a s  continuum electrons a r e  concerned) in t e rms  of the 
new coordinates ( 5 , ~ ) .  Neglecting the interaction of the continuum electrons with the bound ones and the 
recoil effect of the continuum electrons on the nuclei, 

we obtain in a way analogous to Sec. 1I.A: 

Here K i s  the number of bound electrons, and 

i s  the complete molecular Hamiltonian for  the K bound electrons. The operators X(pi ,s) a r e  given by 

They represent  the molecular Hamiltonian for the continuum electrons (without recoil and electron-elec- 
tron interaction), expressed in t e rms  of the quasiatomic H A  and correction te rms.  Thus,  besides the cor-  
rection potential W =  veA+ veB - ?, there occur additional couplings by the relative momentum 5: 

which a r e  s imi lar  to the operator (1/211){Ä,6} frorn Section I1 D. In fact, considering ( I / ~ ~ ) { Ä ,  6) for  a 
single electron, both t e rms  become equal (in order m / P )  for R -2 , a cco rd ing  to Eq. (2.44). Therefore,  
we already know how to calculate the couplings due to g ( ~ ) ( m o / p ) a  . P c  , and no new problems ar i se  from 
this term. 

Because of the asymptotic identity 

this t e rm asymptotically cancels the spurious electronic excitations due to relative motion without a 
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translation operator being necessary. This reflects the fact that <p$ was constructed as to become an 
atomic state for R - * . 

We now make the following ansatz for the wavefunction: 

where 

Hence for all  bound electrons translation effects are  included by the translation operator ?(XK), whereas 
the continuum electrons have no effect on the scattering coordinate. 

We now insert (4.14) and (4.18) into the Schrödinger equation H*= E* and project out the electronic 
wave function and the trans@tion operator. Our choice for zK has the consequence that, when transform- 
ing the Hamiltonian with ?(xK), only H::: contributes to the operator Ä: 

Thus we obtain (making the Same approximations as  in Sec. I1 D: 

where 

A =  v(R-XK) - v(R) 

where V is the sum of all interactions andthevolume element in ( (m)  /(n)) is d3rl.. .d3rKd3pK+l.. .d3pz,. 
Owing to the use of two different basic sets,  two different configurations [(n)), /(W)) will in general not 
be orthogonal. Using 

Equation (4.21) becomes 

Here we put together the Ä-like terrns: 

Thus we have the following additional couplings (compared to Sec. 1I.D): 
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( V A B + ~ ( n ,  - E)(((m) ( ( 4 )  - d ( m ) ( n ) )  

(due t o  nonorthogonality) and 

(due t o  the  correct ion potential). The fur ther  s t e p s  (transformation t o  rotating coordinates and semiclas-  
s ica l  approximation) a r e  completely analogous t o  Sec. 111, and we  may direct ly  w r i t e  down the  modified 
coupled-channel equations. T o  this  end w e  define the modified radial  and rotational couplings: 

( ( m ) ( v a d l  ( 4 )  - ~ [ < ( m ) l  - i ~ a ~ I ( n ) )  +AP„(„], (4.30) 

We find 

The s t r u c t u r e  of these  equations complicates a litt le bit if we  expand $ in  t e r m s  of the wave packets 
(4.12) instead of using t h e  +W. Defining in that c a s e  

we obtain instead of (4.29) the following additional coupling: 

Since f o r  (nz) = (n), 

((m) I(n)) = 6(,)(,,); ((M) IR). I (n)) =Ei6(„ (n) , 
the  coupled-channel equations can be wri t ten a s  

Here  w e  made use  of the  fact that fo r  the Weyl wave packets (4.12), 

f i A ( z l )  I * &  =L/E'dW' / E ' d W 6 ( W  - W')  = o  f o r  E 3 E t  . 
AW Ei  E- 

The  las t  t e r m  in (4.36) may be eliminated by defining 

Since ((m) /Hrad/  (m)) SO and, a s  wil l  be shown in the Sec. 1V C, a l so  

we  have 
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~ ( ~ ) ( t - m )  =b(,,(t- W ) ;  l@(m)(t)I2= ib (m) ( t ) / 2 .  

The new amplitudes b „,(t) fulfill the equations 

where 

In the following section we will study the coupling matrix elements in (4.40) in detail. 

C. Investigation of the additional coupling matrk 
elements 

2' - 
(i) We f i r s t  note that the matrix elements of g ( t i )m0C i=„ LY(~)C can be given the same form a s  the matrix 

elements of the translation vector for the bound electrons: 

where 

is the analogue to the translation vector zK. 
(ii) Now the matrix elements of the correction potential w(;~,R) will be shown to be finite and to vanish 

for R -  m. For  small  R,  W only contains multipole contributions with 1 2 1 [according to our construction 
of ?(P)]. The matrix elements (GO ( W  I GO,) a r e  finite, and the multipole I Part can be estimated by 

where 

Splitting the p integral in a finite part W„, from 0 to p (PP>> l,p'P» 1) and another part from 5 to W ,  

where the f„,gWK may be approximated by their asymptotics (4.8), we find 

The second integral exists for  12 1, since i t  i s  bounded from above by Jop-l-ldp. However, for  1 = O  it i s  
undetermined (due to the logarithmic Coulomb phase). Therefore, it i s  important that V(p) in the limit 
R - W  correctly contain the long-range monopole part of the two-center potential. 

F o r  R -W,  oa the other hand, wG, R) approaches veB(rB): 
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Inserting th i s  into the mat r ix  element, one easily Sees (in a manner analogous t o  the  above reasoning) 
that the  I = O  par t  does  not exis t ,  and the  I =1 par t  does not vanish for  R -m, i f  one u s e s  the <p;. However, 
taking the  wave packets qE a s  a basis ,  we may avoid th i s  problem. The asymptot ics  of the wave packets 
can be calculated; fo r  the l a rge  component, for  example, we  get 

F o r  l a r g e  p, the variation of the logarithmic phase 6, within the interval  [E-,E+] may be neglected with 
respec t  t o  the variation of P p .  Thus a s i m i l a r  es t imate  a s  in  Ref. 39 shows that 

where  A(';,E,~) i s  a spinor amplitude with absolute length <I .  Thus, for  a given t ime  t ,  the wave packet 
decays like l /p2 f o r  p - m. As a function of t ime  i t  sp reads  such that the amplitude d e c r e a s e s  like l / t .  

Now the second part  of the mat r ix  element of W 

f o r  R - m  becomes 

with a function l Ä , ( p , ~ , ~ ~ , t ) /  -( 1. Hence, the  multipole I of the  integral  behaves like 

The f i r s t  integral  in  (4.49) may be estimated s imilar ly.  F i r s t  consider the c a s e  I =0:  

Because of E ' # E  the  f i r s t  t e r m  vanishes, and the  second is -R-' according to Eqs. (4.51) and (4.52). Thus 
the monopole par t  of WER, vanishes like I/R' for  R - W .  The higher multipoles even decay m o r e  rapidly 
because of 

[since p s  R and (P,(COSB) / 11. 
Consequently, we have proved that,  using wave packets, the couplings by the additional potential W van- 

i s h  like 1 / ~ ~  for  R - W .  

(iii)  Finally, we  have to c a r e  about the  overlap ((nz) I (n))((m) f (n)), which in general  i s  determined by the 
overlap ((an 1 <p;) o r  (P,, 1 qE),  respectively, between continuum s ta tes  and bound molecular s ta tes .  
{((W) / (X)) * 0 even if 1 (W)) and 1 (n)) contain the Same numbers  of bound and continuum electrons.  This  i s  
due t o  antisymmetrization. Consider a two-electron sys tem,  let (a, (a' be two different bound one-electron 
s ta tes  ((P 1 P') = 0) and $L a one-electron continuum s ta te  ( ( V  /$) * 0, (V' I $) * 0). The  two-electron sys tem is 
described by 

/ (W))  =( l / JWj<p( l ) )  IS(2)) - /<PP)) IS(1))l 

and 

I (W')) = (i/JZ)[ l(ar(1)) I il> (2)) - / ~ ' ( 2 ) )  /S( l))I  . 
Consequently, ((nz') 1 (W)) =-(V'  /G)($ I (a) * 0 does not vanish.} 

T h e r e  a r e  two possibilities f o r  P,,. F o r  R - m  the bound electron (let us  assume for  simplicity that there  
is only one) can belong t o  nucleus A o r  nucleus B. In the  f i r s t  c a s e  we r e m e m b e r  that f o r  R -  W (one elec- 
tron! ) 
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For  electrons around nucleus A the influence of VeB vanishes fo r  R -a; hence, the bound s ta tes  of H„ - - 
become identical t o  the bound states of HA up to t e rms  - m / l ,  stemming from -(mo/l)a! .Pc, and have t o  
be traced to translation effects. Consequently, ((P, / @W) and (V,/ 93 a r e  of order  m/p .  A more detailed 
analysis shows that 

whence 

The matrix element on the right-hand side has  the 
form (1/2b)(Ä.P)„ and, according to Sec. IIIC is 
an order  m / ~  smal ler  than the radial coupling 
matrix element. Setting hw - E, approximately 
equal to the kinetic energy of the electron in the 
continuum state +W, =(m/2)v2, we see  that (4.55) 
i s  by a factor 

smal ler  than the radial coupling. The higher the 
energy of the continuum state and the smal ler  the 
relative velocity of the two nuclei, the better jus- 
tified i s  the neglect of the asymptotic overlap 
((m) 1 (n)). Here essentially enters  the nonrelativis- 
t ic  behavior of the nuclei. In addition, it will not 
be possible t o  t rea t  continuum electrons with very 
low kinetic energy by this  formalism. To get an 
idea of the order of magnitude for (4.56), assume 
V,=O.lc; for  Ew=moc2+50 keV we have (v, /v)~ 
=0.05, fo r  Ew=moc2+100 keV we have (v,/v)~ 
=0.02. 

If yi, asymptotically becomes bound to  nucleus 
B, there occurs additionally an  overlap with the 
potential vea,(+„Al VeB / (P,) o r  (qE I VeBI (P,,), re-  
spectively. This matrix element goes like 1 / ~  o r  
1 / ~ ~ ,  respectively, i f  R becomes la rger  than the 
effective radius of the bound state (P,. For  very 
large R thus again a t e rm like (4.55) o r  (4.56) de- 
termines the asymptotic smallness of the coupling 

matrix elements. 
Summarizing the results  of this paragraph, al l  

couplings occurring in the modified coupled-chan- 
nel equation (4.40) can be calculated. They a r e  
finite for  all t imes and vanish for t -- up to smal l  
contributions of order (v,/v)~ with respect to the 
radial coupling, a s  long a s  the s ta tes  involved do 
not contain very low energetic continuum elec- 
t rons.  Hence this formulation allows for  a cal- 
culation of the high-energy part  of the 8 electron 
and positron spectra,  which is a s  exact a s  the 
treatment of the bound states.  (Of Course, e r r o r s  
in the description of low-energy continuum s ta tes  
may influence the high-energy spectra via multi- 
step processes. Existing calculations in the mono- 
pole approximation5*15 suggest, however, that dis- 
cretizing the continuum in 50-keV steps does not 
influence the spectra.  Thus i t  is relatively un- 
important how one t r ea t s  the continuum electrons 
with kinetic energy <50 keV. Whether this re -  
mains t rue  for  the angular distribution of the con- 
tinuum spectra has t o  be checked in actual calcu- 
lations. If so,  it means that cur continuum basis  
constructed with the help of wave packets with an 
energy spacing of order 50 keV i s  in fact "com- 
plete enough" for  the description of continuum ex- 
citations.) Fo r  the low-energy part (kinetic ener- 
gy l e s s  than 50 keV) of the continuum, e r r o r s  in 
the order of the asymptotic (uncorrected) radial 
coupling occur. 

D. The calculation of electron spectra 

Let a in ( t )  be the amplitude for a transition of the electronic shell from state m to state n in a collision 
with total angular momentum K (impact parameter  b =~K/P,). The Cross section for  the transition m -n  
i s  given by 

where da,,,,, is the angular volume element for the scattered nuclei. 
The probability for  creating one continuum electron in a collision with impact parameter  b i s  given by 
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the  s u m  of a l l  t ransi t ion probabilities into s ta tes  n which contain one continuum electron: 

o r ,  equivalently, expressed in t e r m s  of the impact parameter  b: 

The total c r o s s  section for  creating one 6 electron is 

T h e r e  a r e  corresponding expressions f o r  the creat ion of two o r  more  continuunl electrons (o r  positrons). 
The total number of o e lec t rons  1s given by 

In o r d e r  to study the differential c r o s s  section, let us  assume one-electron s y s t e m s  f o r  simplicity of 
presentation. The energy spec t rum of the 6 electrons i s  obtained f r o m  (4.60) by differentiating with re -  
spect to the electron energy: 

Here  we assumed that f o r  the continuum s t a t e s  wave packets with inean energies  E ,  have been used, fo r  
which 

This  line spec t rum may be smeared  out by writing 

where  ~ ( E „ E , )  is a smeared-out  Version of the  6 function O(Ee - E , ) .  In o rder  t o  derive the  angular dis- 
tribution of the spec t rum,  note that the angular distribution of a continuum s ta te  with quantum numbers  
(E,) ,  (JI~,): is given by the sp inors  X:,(>„ qA);  h e r e  BA, qA a r e  the electron angles i n  the  coordinate sys-  
t e m  specified by HA, i .e . ,  f o r  t - W  in the coordinate sys tem of n ~ c l e u s  A. Because of the orthogonality 
of the X$ we 0 b t a i n ~ ~ 1 ~ '  

We stated the differential c r o s s  section with 
respec t  t o  the impact parameter ,  since the o r i -  
entation of the sys tem,  i.e., the asymptotic inter - 
nuclear ,  ax i s  depends on b, and the electron 
angles 9„ cpA a r e  defined with r e s p e c t  t o  th i s  
axis.  Hence (4.64) gives a prediction for  the angu- 
l a r  distribution of 6 e lec t rons  with energy E, mea-  
sured  in coincidence with the scat tered projectile.  
If we want t o  calculate the angular distribution 
of the b-integrated spectrum, we f i r s t  have t o  
t rans form the angular charac te r i s t i cs  ( X ? ~ ( ) ( S ~ ~ )  
to  b-independent coordinates 0, and then integrate 
over  b. 

This  t ransformation is split  up into two s teps :  

(1) transformation f rom the sys tem fixed a t  

nucleus A (i.e., moving with respec t  to CMN) t o  
a paral le l  sys tem rest ing with respec t  t o  CMN: 

(8A, cpA) - (BA, cpa) . 
(2) rotation to the nonrotating (i.e., space-fixed) 

CMN system: 

(82, V;) - (.>„V,). 

The definition of the angles  i s  shown in Fig. 4. 
Z is the Z ax is  of the nonrotating CMN sys tem 
(i.e., the beam ax is ) ;  (9„cpe) a r e  defined with 
respec t  t o  th i s  axis.  Zr is the z ax is  of the 
rotating CMN sys tem for  t -a and a l so  of the 
sys tem fixed a t  nucleus A. (9„ cp,) and (82,cpA) 
a r e  defined with respec t  t o  that  axis.  All cp angles  
a r e  Zero in the scat ter ing plane. 
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z 

FIG. 4. Definition of the angles of the different coor- 
dinate Systems used. 

(1) The transformation (1) depends upon the 
energy of the electron. An electron with energy 
E, in the system moving withA [i.e., which is 
emitted with momentum p c  = (E  - has 
in the nonmoving_system the momentum $+AF 
=$-m0(M,/M,)~ and, correspondingly, the en- 
ergy 

E: = [E: +2pApc2 cosgl + ( A P ) ~ $ ~ ' ~  ; (4.65) 

whence 

The order of magnitude for the change in mo- 
mentum is Apc- 25 keV (R =O.lc; M, =2M,), and 
the change in energy AE s 0.05 m,c2pc/E, (i.e., 
also up to S 5  keV). 

in addition the angular volume element 51, is  
changed-an electron emitted in A with angles 
9„qA has in the nonmoving system the angles 
9:, (PA =cpA. $2 may be derived from Fig. 5 by 

FIG. 5., Transformation of the angular volume element 
dOA-dOA. 

As a result we obtain in the nonmoving system 

(2) in the second step we translate from the 
angles (92, (Pa) defined with respect to the Z f  axis 
to angles (9„ V,) defined with respect to the Z 
axis. According to Fig. 6 and the cosine theorem 
of spherical trigonometry we have 

C O S ~ ;  = - COSQ„, COSS, + sinfJmE sin9, sincp, , 

whereas the sine theorem yields 

, sin9, 
sinq, - sincp, . 

sins; 

This i s  a pure rotation so that dS2,=dQA,. Thus 
we get du/dEedSZ,db by inserting (4.70) and (4.71) 
into do/dE:dSZadb. Substituting fJ„, by the impact 
parameter b allows one to integrate over b (nu- 
merically) in order to obtain the double differen- 
tial Cross section du/dE;dQ,, i.e., the angular 
distribution of electrons with energy E„ in the 
nonrotating CMN system. 

It i s  obvious that do/dEidS2, contains much less 
information than the coincidence spectrum 
du/dE;d%db, where the scattered projectile i s  
measured, too, and thus the Z' axis i s  specified. 
An anisotropy with respect to the Z' axis thus 
may easily be smeared out by integrating over 
the impact parameter. Consequently, isotropy 
of do/dE:dQ, (see, e.g., Refs. 36, 37) does not 
tell us much about the isotropy of the coincidence 
spectrum du/dE;dQ,db. 

FIG. 6. Rotation from  PA) to (ae* G). 
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The formalism developed in this  section in 
order  to  t rea t  continuum electrons (and positrons) 
for the f i r s t  time provides a concept for the 
determination of angular distributions of 6 elec-  
t rons and positrons produced in heavy-ion col- 
lisions. Thus theory must be able to reproduce 
recently published data (Refs. 36, 37) for 
do/dEGdS2, (which show an anisotropy less  than 
15%); additionally, it should yield predictions 
for angular distributions of coincidence spectra. 
The necessary numerical calculations st i l l  have 
to  be performed. Here we confine ourselves to  
the presentation of the formalism. 

V. THE SWITCHING FUNCTION 

Finding a suitable switching function f(r ' ,E) has 
been tlie topic of many papers.1R'41-43'51'52 A s 
already mentioned in Sec. 11 C ,  the switching 
function i s  not fixed except for the boundary-condi- 
tions a t  R = 0 and R - W .  All choices of f(F, R) 
fulfilling these conditions a r e  formally equivalent 
(as  long a s  a complete Set of electron wave func- 
tions is used), and therefore many different forms 
for the switching functioz have appeared in the 
literature. usually f(F, R) i s  specified by applying 
the cri ter ion that a proper choice of the switching 
function should simplify the numerical solution 
of the coupled -channel equations. Some author s 
use switching functions with f ree  parameters ,  
which then a r e  optimized a s  t o  minimize the 
coupling matrix elements within a limited number 
of electron ~ t a t e s . ~ ~ ' ~ ~  It was shown that a proper 
choice of the switching function may considerably 
reduce the number of necessary bas is  s ta tes  for  
the solution of the coupled-channel equations for 
the electron a m p l i t ~ d e s . ~ ~ ' ~ ~ ' ~ ~  However , often 
the switching functions finally obtained depend 
upon the s ta tes  taken into account41'43'51'52 and 
hence a r e  not universal (thus violating the f i r s t  
of the c r i te r ia  established by Schneiderman and 
~ u s s e k , ' ~  or  they a r e  given only implicitly and 
can only be used with considerable numerical 
d i f f i ~ u l t i e s . ~ ~ ' ~ ~  Parameter - f ree  fo rms  usually 
a r e  constructed only a s  to satisfy the asymptotic 
conditions and to  interpolate in between in some 
meaningful manner , but lack a phy sical  picture 
behind them.42 One exception, however, is the 
f function given in Ref. 44, wliich will be discussed 
below and which we will finally employ. 

in this section we will discuss two inodels for 
the switching function. The f i r s t  one contains 
one parameter  which will be determined by an 
optimization procedure to be discussed below, 
and thus falls into the c lass  of t r i a l  switching 
functions used in Refs. 41 and 43. However, it 
turns out not to  be universal, and therefore it 

will finally be rejected. The second one44 i s  
derived from f i r s t  principles using the physical 
picture standing behind the translation-factor idea. 
We will show tiiat in the region where we can tes t  
the switching function, both forms,  i.e., the 
optimized one -parameter form and the parame - 
t e r - f ree  form, yield very similar  results. The 
reduction of the coupling matrix elements by ap- 
plication of the switching function in the investi- 
gated R range is in the Same range a s  achieved 
by other a ~ t h o r s . ~ ~ ' ~ ~  This to  our mind strongly 
favors the switching function we used. However, 
we do not consider this a s  a proof that our switch- 
ing function is the only cor rec t  one, o r  the best  
one. More work on this field i s  s t i l l  to be done. 

In order  to a r r ive  a t  a sensible form for the 
switching function, let u s  remember the original 
idea of electron translation factors ,  i.e., to  
cancel the spurious asymptotic couplings resulting 
from the neglectgn of translation effects. We 
demand that f(F,R) be chosen in such a way that 
the translation matrix elements Am,, always just 
cancel the spurious part  of the dynamical coupling 
P„. This spurio:s part  will vanish in the molec- 
ular  limit where P„  contains no spurious con- 
tributions. For  R - it will become maximal 
(e.g., the P& couplings a r e  completely spurious 
in this  limit). In the intermediate region the 
translational effect will be determined by the 
extent to  which the electrons feel attached to  
nucleus A o r  B. 

We tested the following two models for the 
switching function. 

(1) Assuming that the degree of attachment 
essentially i s  given by the rat io of electron radius 
to  nuclear distance (i.e., the smaller  , for example 
rA/R  becomes, the more  the electron belongs to 
nucleus A ), one can make the following one -Pa- 
rameter  ansatz fulfilling the boundary conditions 
of Sec. I1 C :  

where g physically means the cri t ical  rat io R / r A  
or  R/Y„ respectively, where the "molecular" 
electron becomes an "atomic" electron. g can 
be determined by an optimization procedure; a s  
an example, we may postulate that the sum of the 
corrected matrix elements for a l l  ( radial  and 
rotational) couplings to a given state  m should 
become minimal: 
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If the ansatz (5.1) i s  good, then the resulting goD, 
will be universal. In general, however, g„ will 
depend upon the nuclear distance R and the state 
m considered: 

We investigated this behavior numerically; the 
results  of this ad hoc minimization procedure 
will be presented below and compared to another, 
parameter -free choice for the switching function 
which can be obtained from first  principles via 
the following physical c ~ n s i d e r a t i o n ~ ~  (see Fig. 
7): 

(2) Co_?si$er an electron in the field of two 
nuclei; FA,FB will be the forces acting from 
nucleus A and B on the egctron.  F will be the 
resulting total force. If F points directly at 
nucleus A ,  we say the electron belongs to$ and 
set  f = - 1 .  The analogue is true for B. If F,  
however, points to CMN, we say the electron 
neither belongs toA nor to B ,  and we set  h +f 
=O. Generalizing this we se t  

x +f (F, 5)  
2 

= < Y ,  

where cr is obtained from Fig. 7, a s  

One easily verifies that obeys the correct  bound- 
ary  conditions: 

f (F, 6) i s  presentedwhichalso in limit (iii) shows 
exactly the correct  behavior.] Here, LY only van- 
ishes for systems withZA/ZB =MA/MB. This is 
due to the fact that CMN i s  not identical with the 
center of charge. In our earlier consideration of 
the kinetic energy of the relative motion we nat- 
urally were led to the CMN a s  the origin of our 
coordinate system. Now arguing with the electric 
forces, the center of charge would be the natural 
origin. Since these differences, however, a r e  
small [in the limit (iii) CY = 4.5 X 10-3 for Pb-Cm, 
a! = 3.5x 10'4 for U-Cm collisions], we will not 
pursue this problem. 

Now we have two forms for f (F, g )  that can be 
compared. To this end we optimized the parame- 
ter  g in (5.1) by numerically minimizing (5.2) for 
several states Im>. This was done in the U-Cm 
system for two nuclear distances (R = 35 and 3000 
fm); the N = 21 lowest two-center states 'C to '5, 
'TI to 'n were taken into account. The resulting 
optimal parameter turned out to be by no means 
universal; it strongly depends on R a s  well a s  on 
Im>, thus violating the first  criterion in Ref. 18. 
Sometimes the minimum of (5.2) is so shallow that 
gPneven cannot be properly determined. In Table 
111 we summarize the results for gop,. On the other 
hand, calculating with gopt the minimum of (5.2) 
always gave values very near (within 5%) the r e -  
sult obtained by using the parameter-free ansatz 
(5.5). The deviations were in both directions such 
that neither of both Ansätze in i t s  effect could be 
considered better. 

This result lead u s  to the use of (5.4) and (5.5) 
in all practical calculations to be shown in the 

(ii) yB - 0, R fked-. -5 = =- = P. next section. This saved u s  from spending a lot 

M~ 2 of computer time for the optimization of the 
switching function. The good results  obtained with 

ZBMA -2 M 
(iii) R - 0, r„ Y, fixedea, - B .  the parameter -free ansatz (5.5) [compared to (5.1)] 

MN (ZA + ZB) seem to indicate that the physical picture behind 
[ ~ n  Ref. 44 a slightly modified Version of this it (see Fig. 7)  is essentially correct. 

TABLE 111. Results for gWt. 

\ I 

- T \  I 32: 2siI2v 3  5 4.41 x10-' 
\\ C i 2 R  

I 
2 2  2~1/2ß.  3 5 1.74 x 1 0 - ~  WB 8~ 'Z ~ s ~ / ~ u  3d3/ ZU 3000 3 5 1.56 >14 -P ,?  

4~ 2~1/2ß.  3000 >.89 
e 

5~ 3d3/ ZU 3000 >.80 FIG. 7. Vector diagram of the forces acting on an elec- 
tron by two nuclei with charges ZA,  ZB. 
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VI. THE INFLUENCE OF THE TRANSLATION 
CORRECTIONS ON THE K-HOLE 

PRODUCTION IN Pb-Cm COLLISIONS 

Using the parameter-free switching function dis- 
cussed in the last section the translation matrix 
elements were calculated for the Pb-Cm system. 
The two-center bound states for this system were 
calculated by W. Betz30; they will be published 

elsewhere. All matrix elements between the 11 
lowest C states and the 4 lowest ri states were de- 
termined for nuclear distances betweenR = 16 and 
3100 fm. Thus in the united-atom limit the three 
lowest shells ( K ,  L , M )  have been included comple- 
tely, except for two A states. In Fig. 8 we show 
the correlation diagram for the Pb-Cm system. 

Motivated by an earlier investigation of matrix 
elements between molecular wavefun~tions,~ in all 

FIG. 8. (a) The correlation diagram for the Pb-Cm system. X (-) and n(----) states a re  numbered in continuous 
order  from the bottom to the top of the diagram. (b) The crossing regions I and I1 of (ab a re  shown in detail. The fig- 
u re s  a re  taken from Ref. 50. 
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Pb-Cm 

( ~ r ~ & l ~ x )  

FIG. 9. The radial '2 -'B matrix element for the Pb- 
Cm system. 

previous calculations by Kirsch,16 ~ e i n h a r d t , ' ~ ~ ~ ~ ' ~ ~  
and the matrix elements were artificially 
cut off at R - 1500- 2000 fm. The resulting cross 
sections turned out to be rather insensitive to this 
cutoff procecture, if many channels were taken 
into account. However, in calculations with only 
a small number of channels the results showed 
strong dependence upon where the matrix elements 
were cut off. In the calculations presented below, 
the cutoff will be provided in a natural way by the 
translation corrections. Thus we can check the 
validity of the previously used cutoff methods. It 
turns out that all these conventional methods a re  
unphysical and may in principle lead to arbitrary 
results (particularly in calculations where only a 
few channels a re  physically significant). The rea- 
son for that we will now investigate in some de- 
tail. 

FIG. 10. The radial 4~ -'B matrix element for the Pb- 
Cm system. 

FIG. 11. The radial 42 -'B matrix element for the Pb- 
Cm system. 

A. The behavior of the translation matrix elements 

In Figs. 9 to 15 we show 5om: of the corrected 
coupling matrix elements (2 + A)„ . In fact, for 
large nuclear distances nearly all corrected coup- 
lings a re  smaller than the uncorrected ones. Only 
for  a small number of couplings the translation 
corrections at R = 3100 fm do not yet show the ex- 
pected behavior, namely, to decrease the coupling 

Pb-Cm 

1(5Zl&I4Z) l  

FIG. 12. The radial ' 2  -4g matrix element for the Pb- 
Cm system. 
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Pb-Cm 
0 02 i 1 5  I l J , l l i l  

i- 

0 Rb- 
& R(fm) 
f -0 02  
ij t I , 
2;s 04 - ! 

! / 
I - I I 1 

F ! 
/ 

FIG. 13. The angular 5 ( - x ) - i x  matrix element for the 
Pb-Cm system. 

(see, e.g., Fig. 14 and 15). However, there a re  
also only a few matrix elements where the correc- 
tions a re  really strong. The corrected matrix 
elements a r e  typically a factor of 3 smaller than 
the uncorrected ones at R = 3 100 fm. Also for 
states which intuitively could be considered as  
atomic at R = 3100 fm, there still occur large 
couplings, e.g., the radial 'C - 'C coupling [asmyp- 
totically 1s (Pb) - 1s (Cm)], which between 2000 and 
3000 fm shows the typical sharing b e h a v i ~ r ~ ~ ' ~ ~ ' ~ ~  
(see Fig. 9) and is hardly influenced by the cor- 
rection matrix elements; or the radial '% - 'C 
coupling [asymptotically 2s(Pb)- ls (~m)] ,  which 
also is only reduced by a factor of 3 (see Fig. 11). 
Although the corrections in general have the cor- 
rec t  sign their magnitude i s  smaller than expec- 
ted. Obviously at R = 3100 fm the Pb-Cm system 
even for the inner shells does not behave asymp- 
totically enough a s  to be referred to a s  separate 
atoms. The overlap of the wave functions i s  still 
too large for the translation matrix elements to 
be fully effective. 

Pb-Cm 

- + l 7 - ~ 1 ~ ~ 1 3 i i  

FIG. 14. The angular ' ( - Z ) - ~ Z  matrix element for the 
Pb-Cm system. 

Pb-Cm 
~ i l ~ l ~ , 1 5 1 1  

Rifm) 

FIG. 15. The angular i n  - 'C matrix element for the 
Pb-Cm system. 

This conclusion i s  supported by the behavior of 
the sum of excitations in the 52 state (see Fig. 16). 
This sum, 

i s  generally smaller than 1 for R > 400 fm. [Only 
at points, where level crossings occur and cor- 
respondingly some matrix elements show peaks 
which a re  not due to translational effects, (6.1) i s  
larger than 1.1 However, it decreases slowly 
(roughly like and i s  still of the order of 0.2 
at R = 3100 fm. 

B. The K-hole amplitude in Pb-Cm collisions 

Recent measurements of the K -hole probability 
in Pb-Cm c o l l i ~ i o n s ~ ~  show discrepancies to the 
calculations in monopole approximation by Soff 

Pb-Cm 

FIG. 16. The sum of excitations in the ' X  state of the 
Pb-Cm system. The strong maxima a r e  due to level 
crossings,  where some matrix elements show strong 
structure and then dominate the excitation. 
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e t  ~ 1 . ~ ~  at small impact parameters. It was sus- 
pected that these discrepancies can be traced to 
neglect of the rotational coupling in the monopole 
approximation and that calculations using the full 
two-center wave functions a r e  n e ~ e s s a r y . ~ '  Pre-  
liminiary calculations using only the three inner 
shells fail to reproduce the experimental data.=O 
Full calculations, on the other hand, including 
coupling to the continuum, a re  still missing. How- 
ever, to See the effect of translation corrections, 
the existing preliminary calculations may be com- 
pared to corresponding comptaQons where the 
corrected matrix elements (A+ P)„ are  used. 
To this end we made a test calculation taking into 
account only three states: 'E, %, and 5.  Only 
radial coupling was considered. We did the cal- 
culation for two energies (Elab = 3.6 and 5.9 M ~ V /  
amu and for three impact parameters (b = 20, 50, 
100 fm) and compared the result with correspond- 
ing calculations using (a) the monopole approxima- 
tion, and (b) two-center matrix elements which 
were exponentially cut off at 1500 fm.50 The dif- 
ferent K-hole probabilities a re  shown in Fig. 17. 

As the figure shows the three different models 
lead to vastly different results, in particular for 
large impact parameters. On the other hand, the 
results of model (b) vary in the Same range if the 
point where the matrix elements a re  cut off is 
~hanged.~ '  The reason is easily realized by look- 
ing a t  the occupation probability of the '2 state 

FIG. 17. The K-hole probability for a test calculation 
with a three-state System. The 'Z, '2, and '2 states 
were considered; in the ingoing channel only '2 was 
occupied. The curves show results of the monopole ap- 
proximation (----), the two center calculation with ex- 
ponentially cut-off matrix elements (-.-.-) and with ma- 
trix elements corrected for translation effects (-). 

la„(R)I2 a s  a function of R (see Fig. 18). At 
R 3000 fm this probability still oscillates with 
an amplitude which is in agreement with the ob- 
served variations of P(b) a s  the cutoff point i s  
varied. Thus the reason for P(b) being ill de- 
fined in calculations which extend only to R = 3100 
fm is that the coupling matrix elements a re  still 
too large at this internuclear distance, although 
translation corrections have been taken into ac- 
count. 

There a r e  several consequences to be drawn 
from this result. 

(1) The often used way of cutting off the matrix 
elements at R- 1500- 3000 fm is unphysical. In 
special cases (i. e., if only very few transitions 
contribute to the cross section), the resulting 
calculated cross sections may be unreliable. 
Hence the exact knowledge of the matrix elements 
for large R is necessary (in particular for col- 
lisions with large impact parameter), and the 
translation corrections play an important role. 

(2) Cutcng off the dynamical coupling matrix 
elements P„ in a natural way b~ taking into ac- 
count the translation effect via &,, requires the 
knowledge of the two-center electron states up to 
much larger nuclear distances R (presumably 
> 10000 fm). The asymptotic excitation amplitudes 
seem to be only well defined if the two ions a re  
several (2 10) times the K -shell radius apart. 

(3) Even the knowledge of the way in which 
(6 + for R - W  approaches Zero does not help 
U;, z n c e  we do not know how to match this asym- 
ptotic behavior to the calculated matrix elements 
a i  R 13000 fm. As demonstrated in Appendix B, 
(P + A)„ falls asymptotically like ßR". This be- 
havior of the matrix elements, however, cannot 
be observed at distances RS 3000 fm so that the 
proportionality constant ß cannot be determined 
by just looking at the matrix elements. They a re  
not yet asymptotic enough in the considered range 
of R. It i s  not difficult to showZ4 that just fitting 

FIG. 18. The occupation amplitude of the 'l: state as  a 
function of the nuclear distance in the outgoing channel 
for the Same test calculation as  in Hg. 17.  
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the asymptotic behavior to the matrix ele- 
ments at some point R , s  3100 fm yields similarly 
unreliable results a s  the conventional cutoff 
methods: a s  R ,  i s  varied, P (b) varies in the Same 
order of magnitude as  before. 

(4) Inclusion of couplings to higher states and 
to the continuum may make the Cross sections 
less sensitive to the cutoff procedure (as was the 
case in the monopole c a l ~ u l a t i o n s ' ~ ~ ~ ~ ) .  This may, 
however, mean that they a re  also less sensitive 
to translation effects. This question has still to 
be checked by more extensive calculations. 

At this point a remark is in order concerning 
the many calculations of electronic excitations 
which were done using the monopole approxima- 
tion for the two-center There, 
also, the coupling matrix elements usually have 
been cut off at internuclear distances of R - 1500- 
2000 fm. This cutoff is motivated by the fact that 
the large-R behavior of the matrix elements in 
monopole approximation i s  wrong, anyway, due to 
neglect of two-center effects, and that the main 
contribution to electronic excitations come from 
small nuclear distances. Hence the e r ro r  made 
by not correctly taking into account translation 
effects in that case i s  much less serious than the 
error  intrinsic to the monopole approximation it- 
self. Why the monopole approximation i s  working 
so well, and in many cases yields results in ex- 
tremely good agreement with e ~ p e r i m e n t , ~ ~  is not 
yet understood. In this paper, however, we did 
not show that the monopole approximation is 
wrong, but that doing two-center calculations with- 
out translation corrections is wrong. The validity 
of the monopole approximation is another problem. 

VII. CONCLUSIONS 

In this paper we reviewed the theory of elec- 
tronic excitations in heavy-ion collisions, starting 
from a basic quantum-mechanical treatment. Em- 
ploying a number of approximations, each of which 
has been thoroughly investigated a s  to i t s  validity, 
we finally derived a set of coupled differential 
equations for the occupation amplitudes of the mo- 
lecular electronic states. These coupled-channel 
equations consistently contain the lowest-order 
corrections from electron-translation effects, and 
thus yield well-defined asymptotic occupation 
probabilities. No spurious long-range dynamical 
couplings occur. 

The difficulties with the treatment of continuum 
electrons by two-center continuum wave functions 
were avoided by constructing another continuum 
basis. We use, a s  continuum wave functions, 
wave packets constructed from quasiatomic Cou- 
lomb wave functions, which in the limit R - 0 be- 

come the well-known two-center continuum wave 
functions in monopole approximation, and for R - W  

approach atomic Coulomb waves belonging to one 
of the two nuclei. The wave packets used were 
shown to fall off fast enough at infinity in order to 
show no asymptotic couplings with the two-center 
potential. For high energetic continuum states, 
also the matrix elements from the nonorthogon- 
ality with the bound states vanish for R - m .  The 
very-low-energy part of the continuum spectra, 
however, cannot be well described in our basis. 
Nevertheless, we consider this formulation to be 
an essential Progress toward a useful theory of 
electronic excitations into the continuum, since it 
was shown to be powerful enough to yield (to our 
knowledge for the first  time) also the angular dis- 
tribution of the continuum spectra. 

As a f i rs t  application of our theory we investi- 
gated the K -hole production in Pb-Cm collisions. 
In our preliminary calculations we neglected ex- 
citations to the continuum and only took into ac- 
count the inner shells, since in this f i rs t  step we 
were primarily interested in how far the dynami- 
cal couplings between these states were modified 
by electron-translation corrections. For the com- 
putation of the translational matrix elements we 
used a parameter-free switching function derived 
from a consideration of the electric forces by the 
two nuclei acting on the electron. It was shown 
that for large nuclear distances the dynamical 
couplings were reduced by the translation correc- 
tions, but not as  strongly as  we expected. A full 
cancellation of the asymptotic dynamical couplings 
only occurs for very large nuclear distances (we 
estimate R > 10000 fm for the Pb-Cm system). 

Thus our test calculations showed that the con- 
ventional method of artificially cutting off the dyn- 
amical coupling matrix elements at R-  1500-3000 
fm has to be used with great care. We showed by 
numerical solution of the coupled-channel equations 
that the exact behavior of the corrected matrix 
elements at large nuclear distances may strongly 
influence the K -hole production probabilities, in 
particular for collisions with large impact par- 
ameter. This shows the importance of electron- 
translation effects. Whether a full calculation, 
also taking into account higher bound and contin- 
uum states, will be similarly sensitive to the 
large R behavior of the matrix elements remains 
to be checked numerically. 
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We f i r s t  note that H' = <T.T)~/zT-~HT(T+T)-~'z must be Herpcian,  a s  is a unitary operator. 
Using (2.19) and (2.20) and (2.25) and (2.26) we calculate T+(x)T(X): 

Tt(x)T(X)z (I - (i/~)'fp -%)(I + (i/% )X .G) 1 - (i/ri)['fp, X] 

where we have defined g(rf R) = E, Cf (T,, G) + AI'. 
Thus in Ob/@),  (T+T)- '~  commutes with the res t  
up to t e rms  - h/p) grad f ,  which we neglect, and 
we have 

H' -TI-~HT = H  + +[H, T] . ( ~ 2 )  

Remembering that 

T-l(i t)=T(-z)= l - ( i / E ) Z . P +  ... , (A3) 

we now may calculate H' in 0 h/p) : 

(i) The operator p2/2p i s  transformed into 

Neglecting terms - @/p)?f the commutator in (A4) 
vanishes, and we have 

(ii) The kinetic part of H:„@, E) is treated a s  
follows: 

[ I -  (i/E 1% . )kin [ i  + ( i/E )X $1 
(Hmd)kin + (i/E ) [ C H $ ~ I ) ~ ~  ,X] 'fp 

1 
(H:,,l)kin + - X* P, 

P 
(A6) 

wher e 

Ä=P(~/E)[(H$~I)~~.,X]=P(~/E)[H&,X]. (AT) -. - 
The term ( l / p )A  .P is a small, but asymptotically 

important, correction to the kinetic energy p 2 / 2 ~  
of the nuclear relative motion. It is Hermitian up 
to t e rms  which a re  a factor grada f smaller,  and 
therefore may be neglected. (The result would 
have been explicitly Hermitian had w_e o t  neglec- 
ted similar terms when commuting (T+T)"/~ with 
f-H!?). Hermiticity may therefore be made mani- 
fest  by writing in 0 @/P) 

I 
1 

W,%)'„n = @ $ o ~ ) ~ n  +G {X, P} . (A 8) 

(iii) Finaily, we consider the potential. For any 
function F(R) we have: 

T-~(X)V(R)T(X)F(R) = T( -X)V(R)F(R + X) 
= v(R -X)F(R), ( ~ 9 )  

henc e 

T-'(X)v(R)T(X)= v(R -X). (Al01 

The transformed Hamiltonian thus reads: 

1 =C + v m ( R ) + ~ ~ l o l ~ , ~ ) + -  {A,P}+h> 
2~ 2P (Al 1) 

where h i s  given by (2.33). H' i s  Hermitian. 

APPENDIX B: THE CORRECTED MATRIX 
ELEMNTS FOR R + W  

For simplicity we assume a one-electron sys- 
tem. The molecular basis i s  constructed from 
solutions of 

An atomic basis around nucleus A is defined by 

[ ~ ' ~ ~ + ß m , + ~ ~ ~ ( r ~ ) ] ~ r ~ ) = ~ f < p f @ ~ ) ,  (B2) 

There is an analogous construction of a basis 
around nucleus B. (BI) can be rewritten a s  

{(;*PA +M,+ V"")+ [ V ~ ~ + ; * @ - ~ A ) ] } < P ~ ( ~ , R )  

= ~ m @ ) q m ( F , ~ ) .  (B3) 

This allows for large R ,  where PB is Small at 
the location of nucleus A , aperturbation expan- 
sion [according to Sec. 11, (Y . (F - F A )  i s  smaller 
than G* F by a factor m/p anyway]: 



Inserting this expansion into the corrected matrix element and using 

we obtain 

In (B7) the differential Operator P+ Ä only acts  on the matrix element following it. Using (B4) again 
finally yields 

1 ( n ~ ~ + Ä ~ ~ = ~ ( . ~ , ~ ) 7 ( z , ~  I ( ? + Ä ) v e B + ( ? + Ä ) [ G . ( p - E A ) ] / m , A ) .  
l itm m -E! (B81 

in this formula we neglect the matrix element of (3 +X)[; (C - C)], which i s  by a factor (m/p)' smaller  
than the expectation value of G*;. Now we have two possibilities for the wave function q,: 

(1) <p,(r',~)-<p$(F~). In this case f irst-order perturbation theory gives 
R- " 

in both cases matrix elements of the form (B91 play a role. We will investigate them in a moment. In 
case  (2) also the overlap of the two atomic states (n, B I I,A) is important. It will vanish quite suddenly 
a t  some definite R value, since there the exponentially decreasing tai ls  of the two wave functions will 
cease to overlap. The magnitude of this separation distance R depends on the quantum number 1 of the 
intermediate state. If in the sum of (BIO) also excitations into states with high I will take place, then 
the separation distance R may be quite large.+ 

We now study formula (B9). We substitute P + Ä by gAB,  which i s  correct  up to t e rms  - ( n a / p )  grad f. 
Because of 

we get, a s  soon a s  the two atoms have separated (RAB>rA) ,  

Applying P„, the dominant t e r m  for large RAB is the dipole term, and we find 

In the same way we find for (BIO): 

This shows that for large nuclear distances the corrected matrix elements decrease a t  least like l/R3. 
The proportionality constant i s  given by the atomic dipole matrix elements within the separated atoms. 
How well the matrix elements behave like l /R3 i s  determined by the degree of separation of the two atoms. 
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