22 research outputs found

    Genetic deletion of α7 nicotinic acetylcholine receptors induces an age-dependent Alzheimer's disease-like pathology.

    Get PDF
    The accumulation of amyloid-beta peptide (Aβ) and the failure of cholinergic transmission are key players in Alzheimer's disease (AD). However, in the healthy brain, Aβ contributes to synaptic plasticity and memory acting through α7 subtype nicotinic acetylcholine receptors (α7nAChRs). Here, we hypothesized that the α7nAChR deletion blocks Aβ physiological function and promotes a compensatory increase in Aβ levels that, in turn, triggers an AD-like pathology. To validate this hypothesis, we studied the age-dependent phenotype of α7 knock out mice. We found that α7nAChR deletion caused an impairment of hippocampal synaptic plasticity and memory at 12 months of age, paralleled by an increase of Amyloid Precursor Protein expression and Aβ levels. This was accompanied by other classical AD features such as a hyperphosphorylation of tau at residues Ser 199, Ser 396, Thr 205, a decrease of GSK-3β at Ser 9, the presence of paired helical filaments and neurofibrillary tangles, neuronal loss and an increase of GFAP-positive astrocytes. Our findings suggest that α7nAChR malfunction might precede Aβ and tau pathology, offering a different perspective to interpret the failure of anti-Aβ therapies against AD and to find novel therapeutical approaches aimed at restoring α7nAChRs-mediated Aβ function at the synapse

    Antagonizing α7 nicotinic receptors with methyllycaconitine (MLA) potentiates receptor activity and memory acquisition

    Get PDF
    Abstract α7 nicotinic acetylcholine receptors (α7nAChRs) have been targeted to improve cognition in different neurological and psychiatric disorders. Nevertheless, no α7nAChR activating ligand has been clinically approved. Here, we investigated the effects of antagonizing α7nAChRs using the selective antagonist methyllycaconitine (MLA) on receptor activity in vitro and cognitive functioning in vivo. Picomolar concentrations of MLA significantly potentiated receptor responses in electrophysiological experiments mimicking the in vivo situation. Furthermore, microdialysis studies showed that MLA administration substantially increased hippocampal glutamate efflux which is related to memory processes. Accordingly, pre-tetanus administration of low MLA concentrations produced longer lasting potentiation (long-term potentiation, LTP) in studies examining hippocampal plasticity. Moreover, low doses of MLA improved acquisition, but not consolidation memory processes in rats. While the focus to enhance cognition by modulating α7nAChRs lies on agonists and positive modulators, antagonists at low doses should provide a novel approach to improve cognition in neurological and psychiatric disorders

    CL316,243, a β3-adrenergic receptor agonist, induces muscle hypertrophy and increased strength.

    No full text
    Studies in vitro have demonstrated that β3-adrenergic receptors (β3-ARs) regulate protein metabolism in skeletal muscle by promoting protein synthesis and inhibiting protein degradation. In this study, we evaluated whether activation of β3-ARs by the selective agonist CL316,243 modifies the functional and structural properties of skeletal muscles of healthy mice. Daily injections of CL316,243 for 15 days resulted in a significant improvement in muscle force production, assessed by grip strength and weight tests, and an increased myofiber cross-sectional area, indicative of muscle hypertrophy. In addition, atomic force microscopy revealed a significant effect of CL316,243 on the transversal stiffness of isolated muscle fibers. Interestingly, the expression level of mammalian target of rapamycin (mTOR) downstream targets and neuronal nitric oxide synthase (NOS) was also found to be enhanced in tibialis anterior and soleus muscles of CL316,243 treated mice, in accordance with previous data linking β3-ARs to mTOR and NOS signaling pathways. In conclusion, our data suggest that CL316,243 systemic administration might be a novel therapeutic strategy worthy of further investigations in conditions of muscle wasting and weakness associated with aging and muscular diseases

    LTP and memory impairment caused by extracellular A\u3b2 and Tau oligomers is APP-dependent

    Get PDF
    The concurrent application of subtoxic doses of soluble oligomeric forms of human amyloid-beta (oA\u3b2) and Tau (oTau) proteins impairs memory and its electrophysiological surrogate long-term potentiation (LTP), effects that may be mediated by intra-neuronal oligomers uptake. Intrigued by these findings, we investigated whether oA\u3b2 and oTau share a common mechanism when they impair memory and LTP in mice. We found that as already shown for oA\u3b2, also oTau can bind to amyloid precursor protein (APP). Moreover, efficient intra-neuronal uptake of oA\u3b2 and oTau requires expression of APP. Finally, the toxic effect of both extracellular oA\u3b2 and oTau on memory and LTP is dependent upon APP since APP-KO mice were resistant to oA\u3b2- and oTau-induced defects in spatial/associative memory and LTP. Thus, APP might serve as a common therapeutic target against Alzheimer's Disease (AD) and a host of other neurodegenerative diseases characterized by abnormal levels of A\u3b2 and/or Tau

    Time-dependent reversal of synaptic plasticity induced by physiological concentrations of oligomeric Aβ42: an early index of Alzheimer’s disease

    Get PDF
    The oligomeric amyloid-β (Aβ) peptide is thought to contribute to the subtle amnesic changes in Alzheimer’s disease (AD) by causing synaptic dysfunction. Here, we examined the time course of synaptic changes in mouse hippocampal neurons following exposure to Aβ42 at picomolar concentrations, mimicking its physiological levels in the brain. We found opposite effects of the peptide with short exposures in the range of minutes enhancing synaptic plasticity, and longer exposures lasting several hours reducing it. The plasticity reduction was concomitant with an increase in the basal frequency of spontaneous neurotransmitter release, a higher basal number of functional presynaptic release sites, and a redistribution of synaptic proteins including the vesicle-associated proteins synapsin I, synaptophysin, and the post-synaptic glutamate receptor I. These synaptic alterations were mediated by cytoskeletal changes involving actin polymerization and p38 mitogen-activated protein kinase. These in vitro findings were confirmed in vivo with short hippocampal infusions of picomolar Aβ enhancing contextual memory and prolonged infusions impairing it. Our findings provide a model for initiation of synaptic dysfunction whereby exposure to physiologic levels of Aβ for a prolonged period of time causes microstructural changes at the synapse which result in increased transmitter release, failure of synaptic plasticity, and memory loss

    Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory

    Get PDF
    Non-fibrillar soluble oligomeric forms of amyloid-\u3b2 peptide (oA\u3b2) and tau proteins are likely to play a major role in Alzheimer's disease (AD). The prevailing hypothesis on the disease etiopathogenesis is that oA\u3b2 initiates tau pathology that slowly spreads throughout the medial temporal cortex and neocortices independently of A\u3b2, eventually leading to memory loss. Here we show that a brief exposure to extracellular recombinant human tau oligomers (oTau), but not monomers, produces an impairment of long-term potentiation (LTP) and memory, independent of the presence of high oA\u3b2 levels. The impairment is immediate as it raises as soon as 20\u2009min after exposure to the oligomers. These effects are reproduced either by oTau extracted from AD human specimens, or naturally produced in mice overexpressing human tau. Finally, we found that oTau could also act in combination with oA\u3b2 to produce these effects, as sub-toxic doses of the two peptides combined lead to LTP and memory impairment. These findings provide a novel view of the effects of tau and A\u3b2 on memory loss, offering new therapeutic opportunities in the therapy of AD and other neurodegenerative diseases associated with A\u3b2 and tau pathology

    A renewed vision for Amyloid beta and tau in Alzheimer s disease pathophysiology

    No full text
    The aim of this thesis was to study the pathogenetic mechanisms underlying Alzheimer s disease (AD), a neurodegenerative disorder affecting the elderly and characterized by memory loss, personality changes and cognitive dysfunction leading to dementia. I will discuss the main projects in which I participated aimed at understanding the role of the main molecular interactors involved in AD pathogenesis, i.e. Amyloid-beta peptide and tau protein, on hippocampal synaptic plasticity and memory in animal models. After reviewing the pathophysiological models that have been developed so far, our general purpose was to study novel aspects of Amyloid-beta peptide and tau involvement in physiological and pathological conditions to give a different interpretation of the disease

    Role of F3/contactin expression profile in synaptic plasticity and memory in aged mice

    No full text
    We have recently shown that overexpression of the F3/contactin adhesive glycoprotein (also known as Contactin-1) promotes neurogenesis in adult hippocampus, which correlates with improved synaptic plasticity and memory. Because F3/contactin levels physiologically decrease with age, here, we aim at investigating whether its overexpression might counteract the cognitive decline in aged animals. For this we use 20- to 24-month-old TAG/F3 transgenic mice in which F3/contactin overexpression is driven by regulatory sequences from the gene encoding the transient axonal glycoprotein TAG-1 throughout development. We show that aged TAG/F3 mice display improved hippocampal long-term potentiation and memory compared with wild-type littermates. The same mice undergo a decrease of neuronal apoptosis at the hippocampal level, which correlated to a decrease of active caspase-3; by contrast, procaspase-3 and Bax as well as the anti-apoptotic and plasticity-related pathway BDNF/CREB/Bcl-2 were rather increased. Interestingly, amyloid-precursor protein processing was shifted toward sAPPα generation, with a decrease of sAPPβ and amyloid-beta levels. Our data confirm that F3/contactin plays a role in hippocampal synaptic plasticity and memory also in aged mice, suggesting that it acts on molecular pathways related to apoptosis and amyloid-beta production

    CL316,243, a \u3b23-adrenergic receptor agonist, induces muscle hypertrophy and increased strength

    Get PDF
    Studies in vitro have demonstrated that \u3b23-adrenergic receptors (\u3b23-ARs) regulate protein metabolism in skeletal muscle by promoting protein synthesis and inhibiting protein degradation. In this study, we evaluated whether activation of \u3b23-ARs by the selective agonist CL316,243 modifies the functional and structural properties of skeletal muscles of healthy mice. Daily injections of CL316,243 for 15 days resulted in a significant improvement in muscle force production, assessed by grip strength and weight tests, and an increased myofiber cross-sectional area, indicative of muscle hypertrophy. In addition, atomic force microscopy revealed a significant effect of CL316,243 on the transversal stiffness of isolated muscle fibers. Interestingly, the expression level of mammalian target of rapamycin (mTOR) downstream targets and neuronal nitric oxide synthase (NOS) was also found to be enhanced in tibialis anterior and soleus muscles of CL316,243 treated mice, in accordance with previous data linking \u3b23-ARs to mTOR and NOS signaling pathways. In conclusion, our data suggest that CL316,243 systemic administration might be a novel therapeutic strategy worthy of further investigations in conditions of muscle wasting and weakness associated with aging and muscular diseases
    corecore