42,008 research outputs found

    An imaging and spectroscopic study of the planetary nebulae in NGC 5128 (Centaurus A): Planetary nebulae catalogues

    Full text link
    Imaging and spectroscopic observations of planetary nebulae (PNe) in the nearest large elliptical galaxy NGC 5128 (Centaurus A), were obtained to find more PNe and measure their radial velocities. NTT imaging was obtained in 15 fields in NGC 5128 over an area of about 1 square degree with EMMI using [O III] and off-band filters. Newly detected sources, combined with literature PNe, were used as input for VLT FLAMES multi-fibre spectroscopy in MEDUSA mode. Spectra of the 4600-5100A region were analysed and velocities measured based on emission lines of [O III]4959,5007A and often H-beta. The chief results are catalogues of 1118 PN candidates and 1267 spectroscopically confirmed PNe in NGC 5128. The catalogue of PN candidates contains 1060 PNe discovered with EMMI imaging and 58 from literature surveys. The spectroscopic PN catalogue has FLAMES radial velocity and emission line measurements for 1135 PNe, of which 486 are new. Another 132 PN radial velocities are available from the literature. For 629 PNe observed with FLAMES, H-beta was measured in addition to [O III]. Nine targets show double-lined or more complex profiles, and their possible origin is discussed. FLAMES spectra of 48 globular clusters were also targetted: 11 had emission lines detected (two with multiple components), but only 3 are PNe likely to belong to the host globular. The total of 1267 confirmed PNe in NGC 5128 with radial velocity measurements (1135 with small velocity errors) is the largest collection of individual kinematic probes in an early-type galaxy. This PN dataset, as well as the catalogue of PN candidates, are valuable resources for detailed investigation of the stellar population of NGC 5128. [Abridged]Comment: 19 pages, 11 figures. Accepted for publication in Astronomy and Astrophysics. Tables 7 - 11 available in electronic form at CDS. Replaced with a few typos fixe

    Third-dredge-up oxygen in planetary nebulae

    Get PDF
    The planetary nebulae He 2-436 and Wray 16-423 in the Sagittarius dwarf galaxy appear to result from nearly twin stars, except that third-dredge-up carbon is more abundant in He 2-436. A thorough photoionization-model analysis implies that ratios Ne/O, S/O and Ar/O are significantly smaller in He 2-436, indicative of third-dredge-up oxygen enrichment. The enrichment of oxygen with respect to carbon is (7 +/- 4)%. Excess nitrogen in Wray 16-423 suggests third dredge-up of late CN-cycle products even in these low-mass, intermediate-metallicity stars.Comment: To appear in Astron. Astrophys. Lett. (Latex, 5 pages, 1 postscript figure

    The extinction and dust-to-gas structure of the planetary nebula NGC 7009 observed with MUSE

    Get PDF
    The large field and wavelength range of MUSE is well suited to mapping Galactic planetary nebulae (PN). The bright PN NGC 7009 was observed with MUSE on the VLT during the Science Verification of the instrument in seeing of 0.6". Emission line maps in hydrogen Balmer and Paschen lines were formed from analysis of the MUSE cubes. The measured electron temperature and density from the MUSE cube were employed to predict the theoretical hydrogen line ratios and map the extinction distribution across the nebula. After correction for the interstellar extinction to NGC 7009, the internal dust-to-gas ratio (A_V/N_H) has been mapped for the first time in a PN. The extinction map of NGC 7009 has considerable structure, broadly corresponding to the morphological features of the nebula. A large-scale feature in the extinction map, consisting of a crest and trough, occurs at the rim of the inner shell. The nature of this feature was investigated and instrumental and physical causes considered; no convincing mechanisms were identified to produce this feature, other than mass loss variations in the earlier asymptotic giant branch phase. The dust-to-gas ratio A_V/N_H increases from 0.7 times the interstellar value to >5 times from the centre towards the periphery of the ionized nebula. The integrated A_V/N_H is about 2 times the mean ISM value. It is demonstrated that extinction mapping with MUSE provides a powerful tool for studying the distribution of PN internal dust and the dust-to-gas ratio. (Abridged.)Comment: 10 pages, 7 figures. Accepted by A&

    Detection of deuterium Balmer lines in the Orion Nebula

    Get PDF
    The detection and first identification of the deuterium Balmer emission lines, D-alpha and D-beta, in the core of the Orion Nebula is reported. Observations were conducted at the 3.6m Canada-France-Hawaii Telescope, using the Echelle spectrograph Gecko. These lines are very narrow and have identical 11 km/s velocity shifts with respect to H-alpha and H-beta. They are probably excited by UV continuum fluorescence from the Lyman (DI) lines and arise from the interface between the HII region and the molecular cloud.Comment: 4 pages, latex, 1 figure, 1 table, accepted for publication in Astronomy & Astrophysics, Letter

    Kinematics of a hot massive accretion disk candidate

    Full text link
    Characterizing rotation, infall and accretion disks around high-mass protostars is an important topic in massive star formation research. With the Australia Telescope Compact Array and the Very Large Array we studied a massive disk candidate at high angular resolution in ammonia (NH3(4,4) & (5,5)) tracing the warm disk but not the envelope. The observations resolved at ~0.4'' resolution (corresponding to ~1400AU) a velocity gradient indicative of rotation perpendicular to the molecular outflow. Assuming a Keplerian accretion disk, the estimated protostar-disk mass would be high, similar to the protostellar mass. Furthermore, the position-velocity diagram exhibits additional deviation from a Keplerian rotation profile which may be caused by infalling gas and/or a self-gravitating disk. Moreover, a large fraction of the rotating gas is at temperatures >100K, markedly different to typical low-mass accretion disks. In addition, we resolve a central double-lobe cm continuum structure perpendicular to the rotation. We identify this with an ionized, optically thick jet.Comment: 5 pages, 3 figures, accepted for Astrophysical Journal Letters, a high-resolution version of the draft can be found at http://www.mpia.de/homes/beuther/papers.htm

    Effects of Microstructure Formation on the Stability of Vapor Deposited Glasses

    Full text link
    Glasses formed by physical vapor deposition (PVD) are an interesting new class of materials, exhibiting properties thought to be equivalent to those of glasses aged for thousands of years. Exerting control over the structure and properties of PVD glasses formed with different types of glass-forming molecules is now an emerging challenge. In this work, we study coarse grained models of organic glass formers containing fluorocarbon tails of increasing length, corresponding to an increased tendency to form microstructures. We use simulated PVD to examine how the presence of the microphase separated domains in the supercooled liquid influences the ability to form stable glasses. This model suggests that increasing molecule tail length results in decreased thermodynamic and kinetic stability of the molecules in PVD films. The reduced stability is further linked to the reduced ability of these molecules to equilibrate at the free surface during PVD. We find that as the tail length is increased, the relaxation time near the surface of the supercooled equilibrium liquid films of these molecules are slowed and become essentially bulk-like, due to the segregation of the fluorocarbon tails to the free surface. Surface diffusion is also markedly reduced due to clustering of the molecules at the surface. Based on these results, we propose a trapping mechanism where tails are unable to move between local phase separated domains on the relevant deposition time scales

    The time resolved measurement of ultrashort THz-band electric fields without an ultrashort probe

    Get PDF
    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse, and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.Comment: 7 pages, 3 figures, submitted to AP
    corecore