42,886 research outputs found
Specific wavelength colorimeter
A self contained, specific wavelength, single beam colorimeter is described for direct spectrophotometric measurement of the concentration of a given solute in a test sample. An electrical circuit employing a photoconductive cell converts the optical output into a linear, directly readable meter output. The colorimeter is simple to operate and is adapted for use in zero gravity conditions. In a specific application, the colorimeter is designed to analyze the concentration of iodine in potable water carried aboard a space vehicle such as the 4B stage of Skylab
Bargaining in the shadow of precedent: the surprising irrelevance of asymmetric stakes
We develop a model of bargaining and litigation in the context of patent licensing (or any contractual setting). Following Priest and Klein (1984) we developed a model that explicitly allows for (1) multiple parties (leading to asymmetry of stakes), (2) binding precedent, and (3) pre-dispute bargaining done in the “shadow” of precedent-setting courts. The pre-dispute bargaining creates an endogenous opportunity cost of litigation for both plaintiff and defendant; i.e., the harm is endogenous. We show that the effects of asymmetric stakes on the litigation rate and plaintiff win rate are offset by opportunity costs (forgone licensing). That is, the degree of asymmetry does not appear to substantially impact the rate of litigation or the observed win rate of plaintiffs at trial. This result is in stark contrast to the previous theoretical literature, and has implications for interpreting the empirical literature.
Drag of two-dimensional small-amplitude symmetric and asymmetric wavy walls in turbulent boundary layers
Included are results of an experimental investigation of low-speed turbulent flow over multiple two-dimensional transverse rigid wavy surfaces having a wavelength on the order of the boundary-layer thickness. Data include surface pressure and total drag measurements on symmetric and asymmetric wall waves under a low-speed turbulent boundary-layer flow. Several asymmetric wave configurations exhibited drag levels below the equivalent symmetric (sine) wave. The experimental results compare favorably with numerical predictions from a Reynolds-averaged Navier-Stokes spectral code. The reported results are of particular interest for the estimation of drag, the minimization of fabrication waviness effects, and the study of wind-wave interactions
Odyssey: a semi-automated pipeline for phasing, imputation, and analysis of genome-wide genetic data
BACKGROUND:
Genome imputation, admixture resolution and genome-wide association analyses are timely and computationally intensive processes with many composite and requisite steps. Analysis time increases further when building and installing the run programs required for these analyses. For scientists that may not be as versed in programing language, but want to perform these operations hands on, there is a lengthy learning curve to utilize the vast number of programs available for these analyses.
RESULTS:
In an effort to streamline the entire process with easy-to-use steps for scientists working with big data, the Odyssey pipeline was developed. Odyssey is a simplified, efficient, semi-automated genome-wide imputation and analysis pipeline, which prepares raw genetic data, performs pre-imputation quality control, phasing, imputation, post-imputation quality control, population stratification analysis, and genome-wide association with statistical data analysis, including result visualization. Odyssey is a pipeline that integrates programs such as PLINK, SHAPEIT, Eagle, IMPUTE, Minimac, and several R packages, to create a seamless, easy-to-use, and modular workflow controlled via a single user-friendly configuration file. Odyssey was built with compatibility in mind, and thus utilizes the Singularity container solution, which can be run on Linux, MacOS, and Windows platforms. It is also easily scalable from a simple desktop to a High-Performance System (HPS).
CONCLUSION:
Odyssey facilitates efficient and fast genome-wide association analysis automation and can go from raw genetic data to genome: phenome association visualization and analyses results in 3-8 h on average, depending on the input data, choice of programs within the pipeline and available computer resources. Odyssey was built to be flexible, portable, compatible, scalable, and easy to setup. Biologists less familiar with programing can now work hands on with their own big data using this easy-to-use pipeline
Maser Source Finding Methods in HOPS
The {\bf H}{\bf O} Southern Galactic {\bf P}lane {\bf S}urvey (HOPS) has
observed 100 square degrees of the Galactic plane, using the Mopra radio
telescope to search for emission from multiple spectral lines in the 12\,mm
band (19.5\,--\,27.5\,GHz). Perhaps the most important of these spectral lines
is the 22.2\,GHz water maser transition. We describe the methods used to
identify water maser candidates and subsequent confirmation of the sources. Our
methods involve a simple determination of likely candidates by searching peak
emission maps, utilising the intrinsic nature of water maser emission -
spatially unresolved and spectrally narrow-lined. We estimate completeness
limits and compare our method with results from the {\sc Duchamp} source
finder. We find that the two methods perform similarly. We conclude that the
similarity in performance is due to the intrinsic limitation of the noise
characteristics of the data. The advantages of our method are that it is
slightly more efficient in eliminating spurious detections and is simple to
implement. The disadvantage is that it is a manual method of finding sources
and so is not practical on datasets much larger than HOPS, or for datasets with
extended emission that needs to be characterised. We outline a two-stage method
for the most efficient means of finding masers, using {\sc Duchamp}.Comment: 8 pages, 1 table, 4 figures. Accepted for publication in PASA special
issue on Source Finding & Visualisatio
Structural sensitivity analysis: Methods, applications, and needs
Some innovative techniques applicable to sensitivity analysis of discretized structural systems are reviewed. These techniques include a finite-difference step-size selection algorithm, a method for derivatives of iterative solutions, a Green's function technique for derivatives of transient response, a simultaneous calculation of temperatures and their derivatives, derivatives with respect to shape, and derivatives of optimum designs with respect to problem parameters. Computerized implementations of sensitivity analysis and applications of sensitivity derivatives are also discussed. Finally, some of the critical needs in the structural sensitivity area are indicated along with Langley plans for dealing with some of these needs
Kinematics of a hot massive accretion disk candidate
Characterizing rotation, infall and accretion disks around high-mass
protostars is an important topic in massive star formation research. With the
Australia Telescope Compact Array and the Very Large Array we studied a massive
disk candidate at high angular resolution in ammonia (NH3(4,4) & (5,5)) tracing
the warm disk but not the envelope. The observations resolved at ~0.4''
resolution (corresponding to ~1400AU) a velocity gradient indicative of
rotation perpendicular to the molecular outflow. Assuming a Keplerian accretion
disk, the estimated protostar-disk mass would be high, similar to the
protostellar mass. Furthermore, the position-velocity diagram exhibits
additional deviation from a Keplerian rotation profile which may be caused by
infalling gas and/or a self-gravitating disk. Moreover, a large fraction of the
rotating gas is at temperatures >100K, markedly different to typical low-mass
accretion disks. In addition, we resolve a central double-lobe cm continuum
structure perpendicular to the rotation. We identify this with an ionized,
optically thick jet.Comment: 5 pages, 3 figures, accepted for Astrophysical Journal Letters, a
high-resolution version of the draft can be found at
http://www.mpia.de/homes/beuther/papers.htm
European Paediatric Formulation Initiative (EuPFI)-Formulating Ideas for Better Medicines for Children.
© American Association of Pharmaceutical Scientists 2016, published by Springer US, available online at doi: https://doi.org/10.1208/s12249-016-0584-1The European Paediatric Formulation Initiative (EuPFI), founded in 2007, aims to promote and facilitate the preparation of better and safe medicines for children through linking research and information dissemination. It brings together the capabilities of the industry, academics, hospitals, and regulators within a common platform in order to scope the solid understanding of the major issues, which will underpin the progress towards the future of paediatric medicines we want.The EuPFI was formed in parallel to the adoption of regulations within the EU and USA and has served as a community that drives research and dissemination through publications and the organisation of annual conferences. The membership and reach of this group have grown since its inception in 2007 and continue to develop and evolve to meet the continuing needs and ambitions of research into and development of age appropriate medicines. Five diverse workstreams (age-appropriate medicines, Biopharmaceutics, Administration Devices, Excipients and Taste Assessment & Taste Masking (TATM)) direct specific workpackages on behalf of the EuPFI. Furthermore, EuPFI interacts with multiple diverse professional groups across the globe to ensure efficient working in the area of paediatric medicines. Strong commitment and active involvement of all EuPFI stakeholders have proved to be vital to effectively address knowledge gaps related to paediatric medicines, discuss potential areas for further research and identify issues that need more attention and analysis in the future.Peer reviewedFinal Accepted Versio
- …