4,215 research outputs found

    Vapor Recovery: Last Gasp of the Clean Air Act?

    Get PDF
    This Comment deals with two issues relating to the controversy in San Diego County over gasoline vapor recovery. First, the overlapping jurisdictions of the California environmental protection agencies have created enough confusion to diminish the effectiveness of existing air pollution legislation. Second, disagreement exists as to the amount of financial burden polluters must bear for pollution control equipment

    Marriage and Civil Law

    Get PDF

    Integrated aerodynamic/dynamic optimization of helicopter rotor blades

    Get PDF
    An integrated aerodynamic/dynamic optimization procedure is used to minimize blade weight and 4 per rev vertical hub shear for a rotor blade in forward flight. The coupling of aerodynamics and dynamics is accomplished through the inclusion of airloads which vary with the design variables during the optimization process. Both single and multiple objective functions are used in the optimization formulation. The Global Criteria Approach is used to formulate the multiple objective optimization and results are compared with those obtained by using single objective function formulations. Constraints are imposed on natural frequencies, autorotational inertia, and centrifugal stress. The program CAMRAD is used for the blade aerodynamic and dynamic analyses, and the program CONMIN is used for the optimization. Since the spanwise and the azimuthal variations of loading are responsible for most rotor vibration and noise, the vertical airload distributions on the blade, before and after optimization, are compared. The total power required by the rotor to produce the same amount of thrust for a given area is also calculated before and after optimization. Results indicate that integrated optimization can significantly reduce the blade weight, the hub shear and the amplitude of the vertical airload distributions on the blade and the total power required by the rotor

    Optimization methods applied to the aerodynamic design of helicopter rotor blades

    Get PDF
    Described is a formal optimization procedure for helicopter rotor blade design which minimizes hover horsepower while assuring satisfactory forward flight performance. The approach is to couple hover and forward flight analysis programs with a general-purpose optimization procedure. The resulting optimization system provides a systematic evaluation of the rotor blade design variables and their interaction, thus reducing the time and cost of designing advanced rotor blades. The paper discusses the basis for and details of the overall procedure, describes the generation of advanced blade designs for representative Army helicopters, and compares design and design effort with those from the conventional approach which is based on parametric studies and extensive cross-plots

    The Interpenetration of Narrow Construction and Policy: Mr. Justice Stevens\u27 Circuit Opinions

    Get PDF
    Considered in isolation, opinions present a severely fragmented view of the Justice\u27s personal approach to decisionmaking. A myriad of factors constricts the expression of individual beliefs on the bench: the quality of the bar which shapes the issues, a collegial court which requires the accommodation of other judgments, the advocatory nature of an opinion, the inability to articulate the reasons for a decision, and the avoidance of personal statements. Within these restrictions, this Comment will examine Justice Stevens\u27 approach to documentary construction and discern his attitudes toward constitutional decisionmaking

    Shifting Patterns of Nitrogen Excretion and Amino Acid Catabolism Capacity during the Life Cycle of the Sea Lamprey (\u3cem\u3ePetromyzon mariunus\u3c/em\u3e)

    Get PDF
    The jawless fish, the sea lamprey (Petromyzon marinus), spends part of its life as a burrow-dwelling, suspension-feeding larva (ammocoete) before undergoing a metamorphosis into a free swimming, parasitic juvenile that feeds on the blood of fishes. We predicted that animals in this juvenile, parasitic stage have a great capacity for catabolizing amino acids when large quantities of protein-rich blood are ingested. The sixfold to 20-fold greater ammonia excretion rates (JAmm) in postmetamorphic (nonfeeding) and parasitic lampreys compared with ammocoetes suggested that basal rates of amino acid catabolism increased following metamorphosis. This was likely due to a greater basal amino acid catabolizing capacity in which there was a sixfold higher hepatic glutamate dehydrogenase (GDH) activity in parasitic lampreys compared with ammocoetes. Immunoblotting also revealed that GDH quantity was 10-fold and threefold greater in parasitic lampreys than in ammocoetes and upstream migrant lampreys, respectively. Higher hepatic alanine and aspartate aminotransferase activities in the parasitic lampreys also suggested an enhanced amino acid catabolizing capacity in this life stage. In contrast to parasitic lampreys, the twofold larger free amino acid pool in the muscle of upstream migrant lampreys confirmed that this period of natural starvation is accompanied by a prominent proteolysis. Carbamoyl phosphate synthetase III was detected at low levels in the liver of parasitic and upstream migrant lampreys, but there was no evidence of extrahepatic (muscle, intestine) urea production via the ornithine urea cycle. However, detection of arginase activity and high concentrations of arginine in the liver at all life stages examined infers that arginine hydrolysis is an important source of urea. We conclude that metamorphosis is accompanied by a metabolic reorganization that increases the capacity of parasitic sea lampreys to catabolize intermittently large amino acid loads arising from the ingestion of protein rich blood from their prey/hosts. The subsequent generation of energy-rich carbon skeletons can then be oxidized or retained for glycogen and fatty acid synthesis, which are essential fuels for the upstream migratory and spawning phases of the sea lamprey’s life cycle

    Time-Dependent Mechanical Behavior of Proton Exchange Membrane Fuel Cell Electrodes

    Get PDF
    The electrodes used for Proton Exchange Membrane Fuel Cells (PEMFCs) are typically painted or sprayed onto the membrane during manufacturing, making it difficult to directly characterize their mechanical behavior as a stand-alone material. An experimental-numerical hybrid technique is devised to extract the electrode properties from the experimentally measured properties of Nafion® 211 membrane1 and a membrane electrode assembly (MEA) based on Nafion® 211 membrane at various temperatures, humidities, and strain rates. Within the linear regime, the rule-of-mixtures assuming an iso-strain condition is used to calculate the rate-dependent Young\u27s modulus of the electrodes. Beyond the linear regime, reverse analysis is conducted using finite element models of the MEA to determine the non-linear behavior of the electrodes. The mechanical damage mechanisms that occur in the MEA during tensile loading are also investigated through interrupted tension tests and then incorporated into the finite element models for determining the electrode behavior. The results suggest that the electrodes have similar behavior to Nafion® 211 membrane as functions of strain rate, temperature and humidity, but with lower Young\u27s modulus and proportional limit

    Time-Dependent Mechanical Behavior of Proton Exchange Membrane Fuel Cell Electrodes

    Get PDF
    The electrodes used for Proton Exchange Membrane Fuel Cells (PEMFCs) are typically painted or sprayed onto the membrane during manufacturing, making it difficult to directly characterize their mechanical behavior as a stand-alone material. An experimental-numerical hybrid technique is devised to extract the electrode properties from the experimentally measured properties of Nafion® 211 membrane1 and a membrane electrode assembly (MEA) based on Nafion® 211 membrane at various temperatures, humidities, and strain rates. Within the linear regime, the rule-of-mixtures assuming an iso-strain condition is used to calculate the rate-dependent Young\u27s modulus of the electrodes. Beyond the linear regime, reverse analysis is conducted using finite element models of the MEA to determine the non-linear behavior of the electrodes. The mechanical damage mechanisms that occur in the MEA during tensile loading are also investigated through interrupted tension tests and then incorporated into the finite element models for determining the electrode behavior. The results suggest that the electrodes have similar behavior to Nafion® 211 membrane as functions of strain rate, temperature and humidity, but with lower Young\u27s modulus and proportional limit
    • …
    corecore