104 research outputs found

    The M87 Black Hole Mass From Gas-Dynamical Models Of Space Telescope Imaging Spectrograph Observations

    Get PDF
    The supermassive black hole of M87 is one of the most massive black holes known and has been the subject of several stellar and gas-dynamical mass measurements; however, the most recent revision to the stellar-dynamical black hole mass measurement is a factor of about two larger than the previous gas-dynamical determinations. Here, we apply comprehensive gas-dynamical models that include the propagation of emission-line profiles through the telescope and spectrograph optics to new Space Telescope Imaging Spectrograph observations from the Hubble Space Telescope. Unlike the previous gas-dynamical studies of M87, we map out the complete kinematic structure of the emission-line disk within similar to 40 pc from the nucleus, and find that a small amount of velocity dispersion internal to the gas disk is required to match the observed line widths. We examine a scenario in which the intrinsic velocity dispersion provides dynamical support to the disk, and determine that the inferred black hole mass increases by only 6%. Incorporating this effect into the error budget, we ultimately measure a mass of M-BH = (3.5(-0.7)(+0.9)) x 10(9)M circle dot (68% confidence). Our gas-dynamical black hole mass continues to differ from the most recent stellar-dynamical mass by a factor of two, underscoring the need for carrying out more cross-checks between the two main black hole mass measurement methods.NSF Astronomy and Astrophysics Postdoctoral Fellowship 1102845Space Telescope Science Institute 12162NASA NAS 5-26555NSF AST-1108835Astronom

    A Stellar Dynamical Mass Measurement of the Black Hole in NGC 3998 from Keck Adaptive Optics Observations

    Get PDF
    We present a new stellar dynamical mass measurement of the black hole in the nearby, S0 galaxy NGC 3998. By combining laser guide star adaptive optics observations obtained with the OH-Suppressing Infrared Imaging Spectrograph on the Keck II telescope with long-slit spectroscopy from the Hubble Space Telescope and the Keck I telescope, we map out the stellar kinematics on both small spatial scales, well within the black hole sphere of influence, and on large scales. We find that the galaxy is rapidly rotating and exhibits a sharp central peak in the velocity dispersion. Using the kinematics and the stellar luminosity density derived from imaging observations, we construct three-integral, orbit-based, triaxial stellar dynamical models. We find the black hole has a mass of M_BH = (8.1_{-1.9}^{+2.0}) x 10^8 M_sun, with an I-band stellar mass-to-light ratio of M/L = 5.0_{-0.4}^{+0.3} M_sun/L_sun (3-sigma uncertainties), and that the intrinsic shape of the galaxy is very round, but oblate. With the work presented here, NGC 3998 is now one of a very small number of galaxies for which both stellar and gas dynamical modeling have been used to measure the mass of the black hole. The stellar dynamical mass is nearly a factor of four larger than the previous gas dynamical black hole mass measurement. Given that this cross-check has so far only been attempted on a few galaxies with mixed results, carrying out similar studies in other objects is essential for quantifying the magnitude and distribution of the cosmic scatter in the black hole mass - host galaxy relations.Comment: 19 pages, 15 figures, accepted for publication in Ap

    Keck Integral-Field Spectroscopy of M87 Reveals an Intrinsically Triaxial Galaxy and a Revised Black Hole Mass

    Full text link
    The three-dimensional intrinsic shape of a galaxy and the mass of the central supermassive black hole provide key insight into the galaxy's growth history over cosmic time. Standard assumptions of a spherical or axisymmetric shape can be simplistic and can bias the black hole mass inferred from the motions of stars within a galaxy. Here we present spatially-resolved stellar kinematics of M87 over a two-dimensional 250\mbox{^{\prime\prime}} \times 300\mbox{^{\prime\prime}} contiguous field covering a radial range of 50 pc to 12 kpc from integral-field spectroscopic observations at the Keck II Telescope. From about 5 kpc and outward, we detect a prominent 25 km s1\mathrm{km~s}^{-1} rotational pattern, in which the kinematic axis (connecting the maximal receding and approaching velocities) is 4040^\circ misaligned with the photometric major axis of M87. The rotational amplitude and misalignment angle both decrease in the inner 5 kpc. Such misaligned and twisted velocity fields are a hallmark of triaxiality, indicating that M87 is not an axisymmetrically shaped galaxy. Triaxial Schwarzschild orbit modeling with more than 4000 observational constraints enabled us to determine simultaneously the shape and mass parameters. The models incorporate a radially declining profile for the stellar mass-to-light ratio suggested by stellar population studies. We find that M87 is strongly triaxial, with ratios of p=0.845p=0.845 for the middle-to-long principal axes and q=0.722q=0.722 for the short-to-long principal axes, and determine the black hole mass to be (5.370.25+0.37±0.22)×109M(5.37^{+0.37}_{-0.25}\pm 0.22)\times 10^9 M_\odot, where the second error indicates the systematic uncertainty associated with the distance to M87.Comment: Accepted for publication in ApJL. 15 pages, 8 figure

    The MASSIVE Survey - VIII. Stellar Velocity Dispersion Profiles and Environmental Dependence of Early-Type Galaxies

    Full text link
    We measure the radial profiles of the stellar velocity dispersions, σ(R)\sigma(R), for 90 early-type galaxies (ETGs) in the MASSIVE survey, a volume-limited integral-field spectroscopic (IFS) galaxy survey targeting all northern-sky ETGs with absolute KK-band magnitude MK<25.3M_K < -25.3 mag, or stellar mass M>4×1011MM_* > 4 \times 10^{11} M_\odot, within 108 Mpc. Our wide-field 107" ×\times 107" IFS data cover radii as large as 40 kpc, for which we quantify separately the inner (2 kpc) and outer (20 kpc) logarithmic slopes γinner\gamma_{\rm inner} and γouter\gamma_{\rm outer} of σ(R)\sigma(R). While γinner\gamma_{\rm inner} is mostly negative, of the 56 galaxies with sufficient radial coverage to determine γouter\gamma_{\rm outer} we find 36% to have rising outer dispersion profiles, 30% to be flat within the uncertainties, and 34% to be falling. The fraction of galaxies with rising outer profiles increases with MM_* and in denser galaxy environment, with 10 of the 11 most massive galaxies in our sample having flat or rising dispersion profiles. The strongest environmental correlations are with local density and halo mass, but a weaker correlation with large-scale density also exists. The average γouter\gamma_{\rm outer} is similar for brightest group galaxies, satellites, and isolated galaxies in our sample. We find a clear positive correlation between the gradients of the outer dispersion profile and the gradients of the velocity kurtosis h4h_4. Altogether, our kinematic results suggest that the increasing fraction of rising dispersion profiles in the most massive ETGs are caused (at least in part) by variations in the total mass profiles rather than in the velocity anisotropy alone.Comment: Accepted/in press, MNRA

    ALMA Observations of Circumnuclear Disks in Early Type Galaxies: 12CO(2-1) and Continuum Properties

    Full text link
    We present results from an Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 2 program to map CO(2-1) emission in nearby early-type galaxies (ETGs) that host circumnuclear gas disks. We obtained 0.3\sim0.3''-resolution Band 6 observations of seven ETGs selected on the basis of dust disks in Hubble Space Telescope images. We detect CO emission in five at high signal-to-noise ratio with the remaining two only faintly detected. All CO emission is coincident with the dust and is in dynamically cold rotation. Four ETGs show evidence of rapid central rotation; these are prime candidates for higher-resolution ALMA observations to measure the black hole masses. In this paper we focus on the molecular gas and continuum properties. Total gas masses and H2_2 column densities for our five CO-bright galaxies are on average 108\sim10^8 MM_\odot and 1022.5\sim10^{22.5} cm2^{-2} over the \simkpc-scale disks, and analysis suggests that these disks are stabilized against gravitational fragmentation. The continuum emission of all seven galaxies is dominated by a central, unresolved source, and in five we also detect a spatially extended component. The \sim230 GHz nuclear continua are modeled as power laws ranging from Sνν0.4S_\nu \sim \nu^{-0.4} to ν1.6\nu^{1.6} within the observed frequency band. The extended continuum profiles of the two radio-bright (and CO-faint) galaxies are roughly aligned with their radio jet and suggests resolved synchrotron jets. The extended continua of the CO-bright disks are coincident with optically thick dust absorption and have spectral slopes that are consistent with thermal dust emission.Comment: 20 pages, 10 figures; accepted for publication in Ap

    The MASSIVE Survey XIII -- Spatially Resolved Stellar Kinematics in the Central 1 kpc of 20 Massive Elliptical Galaxies with the GMOS-North Integral-Field Spectrograph

    Full text link
    We use observations from the GEMINI-N/GMOS integral-field spectrograph (IFS) to obtain spatially resolved stellar kinematics of the central 1\sim 1 kpc of 20 early-type galaxies (ETGs) with stellar masses greater than 1011.7M10^{11.7} M_\odot in the MASSIVE survey. Together with observations from the wide-field Mitchell IFS at McDonald Observatory in our earlier work, we obtain unprecedentedly detailed kinematic maps of local massive ETGs, covering a scale of 0.130\sim 0.1-30 kpc. The high (120\sim 120) signal-to-noise of the GMOS spectra enable us to obtain two-dimensional maps of the line-of-sight velocity, velocity dispersion σ\sigma, as well as the skewness h3h_3 and kurtosis h4h_4 of the stellar velocity distributions. All but one galaxy in the sample have σ(R)\sigma(R) profiles that increase towards the center, whereas the slope of σ(R)\sigma(R) at one effective radius (ReR_e) can be of either sign. The h4h_4 is generally positive, with 14 of the 20 galaxies having positive h4h_4 within the GMOS aperture and 18 having positive h4h_4 within 1Re1 R_e. The positive h4h_4 and rising σ(R)\sigma(R) towards small radii are indicative of a central black hole and velocity anisotropy. We demonstrate the constraining power of the data on the mass distributions in ETGs by applying Jeans anisotropic modeling (JAM) to NGC~1453, the most regular fast rotator in the sample. Despite the limitations of JAM, we obtain a clear χ2\chi^2 minimum in black hole mass, stellar mass-to-light ratio, velocity anisotropy parameters, and the circular velocity of the dark matter halo.Comment: Accepted to Ap

    The MASSIVE Survey - VII. The Relationship of Angular Momentum, Stellar Mass and Environment of Early-Type Galaxies

    Full text link
    We analyse the environmental properties of 370 local early-type galaxies (ETGs) in the MASSIVE and ATLAS3D surveys, two complementary volume-limited integral-field spectroscopic (IFS) galaxy surveys spanning absolute KK-band magnitude 21.5>MK>26.6-21.5 > M_K > -26.6, or stellar mass 8×109<M<2×1012M8 \times 10^{9} < M_* < 2 \times 10^{12} M_\odot. We find these galaxies to reside in a diverse range of environments measured by four methods: group membership (whether a galaxy is a brightest group/cluster galaxy, satellite, or isolated), halo mass, large-scale mass density (measured over a few Mpc), and local mass density (measured within the NNth neighbour). The spatially resolved IFS stellar kinematics provide robust measurements of the spin parameter λe\lambda_e and enable us to examine the relationship among λe\lambda_e, MM_*, and galaxy environment. We find a strong correlation between λe\lambda_e and MM_*, where the average λe\lambda_e decreases from 0.4\sim 0.4 to below 0.1 with increasing mass, and the fraction of slow rotators fslowf_{\rm slow} increases from 10\sim 10% to 90%. We show for the first time that at fixed MM_*, there are almost no trends between galaxy spin and environment; the apparent kinematic morphology-density relation for ETGs is therefore primarily driven by MM_* and is accounted for by the joint correlations between MM_* and spin, and between MM_* and environment. A possible exception is that the increased fslowf_{\rm slow} at high local density is slightly more than expected based only on these joint correlations. Our results suggest that the physical processes responsible for building up the present-day stellar masses of massive galaxies are also very efficient at reducing their spin, in any environment.Comment: Accepted to MNRA

    MRK 1216 & NGC 1277 - An orbit-based dynamical analysis of compact, high velocity dispersion galaxies

    Get PDF
    We present a dynamical analysis to infer the structural parameters and properties of the two nearby, compact, high velocity dispersion galaxies MRK1216 & NGC1277. Combining deep HST imaging, wide-field IFU stellar kinematics, and complementary long-slit spectroscopic data out to 3 R_e, we construct orbit-based models to constrain their black hole masses, dark matter content and stellar mass-to-light ratios. We obtain a black hole mass of log(Mbh/Msun) = 10.1(+0.1/-0.2) for NGC1277 and an upper limit of log(Mbh/Msun) = 10.0 for MRK1216, within 99.7 per cent confidence. The stellar mass-to-light ratios span a range of Upsilon_V = 6.5(+1.5/-1.5) in NGC1277 and Upsilon_H = 1.8(+0.5/-0.8) in MRK1216 and are in good agreement with SSP models of a single power-law Salpeter IMF. Even though our models do not place strong constraints on the dark halo parameters, they suggest that dark matter is a necessary ingredient in MRK1216, with a dark matter contribution of 22(+30/-20) per cent to the total mass budget within 1 R_e. NGC1277, on the other hand, can be reproduced without the need for a dark halo, and a maximal dark matter fraction of 13 per cent within the same radial extent. In addition, we investigate the orbital structures of both galaxies, which are rotationally supported and consistent with photometric multi-S\'ersic decompositions, indicating that these compact objects do not host classical, non-rotating bulges formed during recent (z <= 2) dissipative events or through violent relaxation. Finally, both MRK 1216 and NGC 1277 are anisotropic, with a global anisotropy parameter delta of 0.33 and 0.58, respectively. While MRK 1216 follows the trend of fast-rotating, oblate galaxies with a flattened velocity dispersion tensor in the meridional plane of the order of beta_z = delta, NGC 1277 is highly tangentially anisotropic and seems to belong kinematically to a distinct class of objects.Comment: 27 pages, 15 figures and 4 tables. Accepted for publication in MNRA

    The Black Hole in the Compact, High-dispersion Galaxy NGC 1271

    Get PDF
    Located in the Perseus cluster, NGC 1271 is an early-type galaxy with a small effective radius of 2.2 kpc and a large stellar velocity dispersion of 276 km/s for its K-band luminosity of 8.9x10^{10} L_sun. We present a mass measurement for the black hole in this compact, high-dispersion galaxy using observations from the integral field spectrograph NIFS on the Gemini North telescope assisted by laser guide star adaptive optics, large-scale integral field unit observations with PPAK at the Calar Alto Observatory, and Hubble Space Telescope WFC3 imaging observations. We are able to map out the stellar kinematics on small spatial scales, within the black hole sphere of influence, and on large scales that extend out to four times the galaxy's effective radius. We find that the galaxy is rapidly rotating and exhibits a sharp rise in the velocity dispersion. Through the use of orbit-based stellar dynamical models, we determine that the black hole has a mass of (3.0^{+1.0}_{-1.1}) x 10^9 M_sun and the H-band stellar mass-to-light ratio is 1.40^{+0.13}_{-0.11} M_sun/L_sun (1-sigma uncertainties). NGC 1271 occupies the sparsely-populated upper end of the black hole mass distribution, but is very different from the Brightest Cluster Galaxies (BCGs) and giant elliptical galaxies that are expected to host the most massive black holes. Interestingly, the black hole mass is an order of magnitude larger than expectations based on the galaxy's bulge luminosity, but is consistent with the mass predicted using the galaxy's bulge stellar velocity dispersion. More compact, high-dispersion galaxies need to be studied using high spatial resolution observations to securely determine black hole masses, as there could be systematic differences in the black hole scaling relations between these types of galaxies and the BCGs/giant ellipticals, thereby implying different pathways for black hole and galaxy growth.Comment: accepted for publication in Ap
    corecore