2,701 research outputs found

    Quantitative and Qualitative Responses of Lake Eola to Urban Runoff

    Get PDF
    For temperate lakes which receive a variable nutrient loading with seasonal variance in their hydrology, it is necessary to consider the dynamic response of the lake to these variable nutrient loadings. An approach to evaluate Lake Eola water quality responses to dynamic discharge of nutrients is presented. The major source of nutrients for this lake is stormwater runoff containing nitrogen and phosphorus. A mass balance of nutrient sources and sinks for the period of one year (April 1980 - March 1981) was performed. To accomplish this, a field determination for various parameters of the hydrologic budget was performed on a monthly basis. A monthly water quality analysis of the lake was measured. It was determined that Lake Eola was phosphorus limited and that 87% of the Total Phosphorus entering the lake via stormwater runoff was retained in the bottom sediments. Retention of various nutrients ranged from 77% to 93%. In order to evaluate the dynamic response of this lake, it was necessary to consider the retention of the nutrients as a function of time. The inductive methodology for this analysis and an example for Total Phosphorus is presented

    How Does the Brain Implement Adaptive Decision Making to Eat?

    Get PDF
    Adaptive decision making to eat is crucial for survival, but in anorexia nervosa, the brain persistently supports reduced food intake despite a growing need for energy. How the brain persists in reducing food intake, sometimes even to the point of death and despite the evolution of multiple mechanisms to ensure survival by governing adaptive eating behaviors, remains mysterious. Neural substrates belong to the reward-habit system, which could differ among the eating disorders. The present review provides an overview of neural circuitry of restrictive food choice, binge eating, and the contribution of specific serotonin receptors. One possibility is that restrictive food intake critically engages goal-directed (decision making) systems and “habit,” supporting the view that persistent caloric restriction mimics some aspects of addiction to drugs of abuse

    Early Troponin I in critical illness and its association with hospital mortality: a cohort study:Early Troponin I in ICU and hospital mortality

    Get PDF
    Background: Troponin I (TnI) is frequently elevated in critical illness, but its interpretation is unclear. Our primary objectives in this study were to evaluate whether TnI is associated with hospital mortality and if this association persists after adjusting for potential confounders. We also aimed to ascertain whether addition of TnI to the Acute Physiological and Chronic Health Evaluation II (APACHE II) risk prediction model improves its performance in general intensive care unit (ICU) populations. Methods: We performed an observational cohort study with independent derivation and validation cohorts in two general level 3 ICU departments in the United Kingdom. The derivation cohort was a 4.5-year cohort (2010–2014) of general ICU index admissions (n = 1349). The validation cohort was used for secondary analysis of a prospective study dataset (2010) (n = 145). The primary exposure was plasma TnI concentration taken within 24 h of ICU admission. The primary outcome was hospital mortality. We performed multivariate regression, adjusting for components of the APACHE II model. We derived the risk prediction score from the multivariable model with TnI. Results: Hospital mortality was 37.3% (n = 242) for patients with detectable TnI, compared with 14.6% (n = 102) for patients without detectable TnI. There was a significant univariate association between TnI and hospital mortality (OR per doubling TnI 1.16, 95% CI 1.13–1.20, p < 0.001). This persisted after adjustment for APACHE II model components (TnI OR 1.05, 95% CI 1.01–1.09, p = 0.003). TnI correlated most strongly with the acute physiology score (APS) component of APACHE II (r = 0.39). Addition of TnI to the APACHE II model did not improve discrimination (APACHE II concordance statistic [c-index] 0.835, 95% CI 0.811–0.858; APACHE II + TnI c-index 0.837, 95% CI 0.813–0.860; p = 0.330) or other measures of model performance. Conclusions: TnI is an independent predictor of hospital mortality and correlates most highly with the APS component of APACHE II. It does not improve risk prediction. We would not advocate the adoption of routine troponin analysis on admission to ICU, and we recommend that troponin be measured only if clinically indicate

    Age-Related Sexual Dimorphism in Temporal Discrimination and in Adult-Onset Dystonia Suggests GABAergic Mechanisms

    Get PDF
    Background: Adult-onset isolated focal dystonia (AOIFD) presenting in early adult life is more frequent in men, whereas in middle age it is female predominant. Temporal discrimination, an endophenotype of adult-onset idiopathic isolated focal dystonia, shows evidence of sexual dimorphism in healthy participants. Objectives: We assessed the distinctive features of age-related sexual dimorphism of (i) sex ratios in dystonia phenotypes and (ii) sexual dimorphism in temporal discrimination in unaffected relatives of cervical dystonia patients. Methods: We performed (i) a meta-regression analysis of the proportion of men in published cohorts of phenotypes of adult-onset dystonia in relation to their mean age of onset and (ii) an analysis of temporal discrimination thresholds in 220 unaffected first-degree relatives (125 women) of cervical dystonia patients. Results: In 53 studies of dystonia phenotypes, the proportion of men showed a highly significant negative association with mean age of onset (p \u3c 0.0001, pseudo-R2 = 59.6%), with increasing female predominance from 40 years of age. Age of onset and phenotype together explained 92.8% of the variance in proportion of men. Temporal discrimination in relatives under the age of 35 years is faster in women than men but the age-related rate of deterioration in women is twice that of men; after 45 years of age, men have faster temporal discrimination than women. Conclusion: Temporal discrimination in unaffected relatives of cervical dystonia patients and sex ratios in adult-onset dystonia phenotypes show similar patterns of age-related sexual dimorphism. Such age-related sexual dimorphism in temporal discrimination and adult-onset focal dystonia may reflect common underlying mechanisms. Cerebral GABA levels have been reported to show similar age-related sexual dimorphism in healthy participants and may be the mechanism underlying the observed age-related sexual dimorphism in temporal discrimination and the sex ratios in AOIFD
    corecore