529 research outputs found

    Photosynthesis and nitrogen fixation in a cyanobacterial bloom in the Baltic Sea

    Get PDF

    Photosynthetic activity and population dynamics of Amoebobacter purpureus in a meromictic saline lake

    Get PDF
    Abstract A dense population of the purple sulfur bacterium Amoebobacter purpureus in the chemocline of meromictic Mahoney Lake (British Columbia, Canada) underwent consistent changes in biomass over a two year study period. The integrated amount of bacteriochlorophyll reached maxima in August and declined markedly during early fall. Bacteriochlorophyll was only weakly correlated with the light intensity and water temperature in the chemocline. In the summer, bacterial photosynthesis was limited by sulfide availability. During this period the intracellular sulfur concentration of A. purpureus cells decreased. A minimum concentration was measured at the top of the bacterial layer in August, when specific photosynthetic rates of A. purpureus indicated that only 14% of the cells were photosynthetically active. With the exception of a time period between August and September, the specific growth rates calculated from CO2 fixation rates of A. purpureus were similar to growth rates calculated from actual biomass changes in the bacterial layer. Between August and September 86% of the A. purpureus biomass disappeared from the chemocline and were deposited on the littoral sediment of Mahoney Lake or degraded within the mixolimnion. This rise of cells to the lake surface was not mediated by an increase in the specific gas vesicle content which remained constant between April and November. The upwelling phenomenon was related to the low sulfur content of A. purpureus cells and a low resistance of surface water layers against vertical mixing by wind

    Solid-state NMR evidence for inequivalent GvpA subunits in gas vesicles

    Get PDF
    Gas vesicles are organelles that provide buoyancy to the aquatic microorganisms that harbor them. The gas vesicle shell consists almost exclusively of the hydrophobic 70-residue gas vesicle protein A, arranged in an ordered array. Solid-state NMR spectra of intact collapsed gas vesicles from the cyanobacterium Anabaena flos-aquae show duplication of certain gas vesicle protein A resonances, indicating that specific sites experience at least two different local environments. Interpretation of these results in terms of an asymmetric dimer repeat unit can reconcile otherwise conflicting features of the primary, secondary, tertiary, and quaternary structures of the gas vesicle protein. In particular, the asymmetric dimer can explain how the hydrogen bonds in the β-sheet portion of the molecule can be oriented optimally for strength while promoting stabilizing aromatic and electrostatic side-chain interactions among highly conserved residues and creating a large hydrophobic surface suitable for preventing water condensation inside the vesicle.National Institutes of Health (U.S.) (Grant EB002175)National Institutes of Health (U.S.) (Grant EB003151)National Institutes of Health (U.S.) (Grant EB002026

    Novel pyrrolobenzodiazepine benzofused hybrid molecules inhibit NF-κB activity and synergise with bortezomib and ibrutinib in hematological cancers

    Get PDF
    Chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) are incurable hematological malignancies that are pathologically linked with aberrant NF-κB activation. In this study, we identified a group of novel C8-linked benzofused Pyrrolo[2,1-c][1,4]benzodiazepines (PBD) monomeric hybrids capable of sequence-selective inhibition of NF-κB with low nanomolar LD50 values in CLL (n=46) and MM cell lines (n=5). The lead compound, DC-1-192, significantly inhibited NF-κB DNA binding after just 4h exposure and demonstrating inhibitory effects on both canonical and non-canonical NF-κB subunits. In primary CLL cells, sensitivity to DC-1-192 was inversely correlated with RelA subunit expression (r2=0.2) and samples with BIRC3 or NOTCH1 mutations showed increased sensitivity (P=0.001). RNA-sequencing and gene set enrichment analysis confirmed the over-representation of NF-κB regulated genes in the down-regulated gene list. Furthermore, In vivo efficacy studies in NOD/SCID mice, using a systemic RPMI 8226 human multiple myeloma xenograft model, showed that DC-1-192 significantly prolonged survival (P=0.017). In addition, DC1-192 showed synergy with bortezomib and ibrutinib; synergy with ibrutinib was enhanced when CLL cells were co-cultured on CD40L-expressing fibroblasts in order to mimic the cytoprotective lymph node microenvironment (P = 0.01). Given that NF-κB plays a role in both bortezomib and ibrutinib resistance mechanisms, these data provide a strong rationale for the use of DC-1-192 in the treatment of NF-κB-driven cancers, particularly in the context of relapsed/refractory disease

    Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton – an experimental study

    Get PDF
    Form resistance (Phi) is a dimensionless number expressing how much slower or faster a particle of any form sinks in a fluid medium than the sphere of equivalent volume. Form resistance factors of PVC models of phytoplankton sinking in glycerin were measured in a large aquarium (0.6 x 0.6 x 0.95 m). For cylindrical forms, a positive relationship was found between Phi and length/ width ratio. Coiling decreased Phi in filamentous forms. Form resistance of Asterionella colonies increased from single cells up to 6-celled colonies than remained nearly constant. For Fragilaria crotonensis chains, no such upper limit to Phi was observed in chains of up to 20 cells ( longer ones were not measured). The effect of symmetry on Phi was tested in 1 - 6-celled Asterionella colonies, having variable angles between the cells, and in Tetrastrum staurogeniaeforme coenobia, having different spine arrangements. In all cases, symmetric forms had considerably higher form resistance than asymmetric ones. However, for Pediastrum coenobia with symmetric/asymmetric fenestration, no difference was observed with respect to symmetry. Increasing number and length of spines on Tetrastrum coenobia substantially increased Phi. For a series of Staurastrum forms, a significant positive correlation was found between arm-length/cell-width ratio and Phi: protuberances increased form resistance. Flagellates (Rhodomonas, Gymnodinium) had a Phi 1. The highest value ( Phi = 8.1) was established for a 20-celled Fragilaria crotonensis chain. Possible origin of the so-called 'vital component' ( a factor that shows how much slower viable populations sink than morphologically similar senescent or dead ones) is discussed, as is the role of form resistance in evolution of high diversity of plankton morphologies

    Aldehyde-mediated inhibition of asparagine biosynthesis has implications for diabetes and alcoholism

    Get PDF
    Patients with alcoholism and type 2 diabetes manifest altered metabolism, including elevated aldehyde levels and unusually low asparagine levels. We show that asparagine synthetase B (ASNS), the only human asparagine-forming enzyme, is inhibited by disease-relevant reactive aldehydes, including formaldehyde and acetaldehyde. Cellular studies show non-cytotoxic amounts of reactive aldehydes induce a decrease in asparagine levels. Biochemical analyses reveal inhibition results from reaction of the aldehydes with the catalytically important N-terminal cysteine of ASNS. The combined cellular and biochemical results suggest a possible mechanism underlying the low asparagine levels in alcoholism and diabetes. The results will stimulate research on the biological consequences of the reactions of aldehydes with nucleophilic residues
    • …
    corecore