11 research outputs found

    Arterial and microvascular supply of cerebral hemispheres in the nude mouse revealed using corrosion casting and scanning electron microscopy

    No full text
    Morphological analyses of cerebral vascularization are not only important for the characterization of the anatomical and physiological relationships between vascular and nervous tissue, but also required to understand structural modifications that occur in many pathological conditions affecting the brain. The aim of this study was to generate a three-dimensional vascular map of the cerebral hemispheres in the nude mouse brain, a widely used animal model for studying tumour biology. We used the corrosion casting (CC) technique to isolate blood vessels from 30 nude mouse brains. All casts were analysed using scanning electron microscopy (SEM), which generated quantitative data regarding vessel length and diameter as well as inter-vascular and inter-branching distances. We identified three different topographical regions: (i) the cortical region, characterized by a superficial wide sheet of vessels giving rise to terminal perforant vessels that penetrate the grey matter; (ii) the inner part of the grey matter, in which dense capillary nets form many flake-like structures extending towards the grey-white matter boundary, where perforant vessels finally change direction and form a well-defined vascular sheet; and (iii) the white matter layer, characterized by a more disorganized vascular architecture. In this study, we demonstrate the accuracy of the CC-SEM method in revealing the 3D-topographical organization of the vascular network of the normal nude mouse brain. These baseline data will serve as a reference for future anatomical investigations of pathological alterations, such as tumour infiltrations, using the nude mouse model

    Acknowledging the use of human cadaveric tissues in research papers : recommendations from anatomical journal editors

    Get PDF
    Research within the anatomical sciences often relies on human cadaveric tissues. Without the good will of these donors who allow us to use their bodies to push forward our anatomical knowledge, most human anatomical research would come to a standstill. However, many research papers omit an acknowledgement to the donor cadavers or, as no current standardized versions exist, use language that is extremely varied. To remedy this problem, 19 editors-in-chiefs from 16 anatomical journals joined together to put together official recommendations that can be used by authors when acknowledging the donor cadavers used in their studies. The goal of these recommendations is to standardize the writing approach by which donors are acknowledged in anatomical studies that use human cadaveric tissues. Such sections in anatomical papers will not only rightfully thank those who made the donation but might also encourage, motivate, and inspire future individuals to make such gifts for the betterment of the anatomical sciences and patient care. This article is protected by copyright. All rights reserved

    A Mathematical Model of the Growth of Uterine Myomas

    No full text
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11538-014-0045-5Uterine myomas or fibroids are common, benign smooth muscle tumours that can grow to 10 cm or more in diameter and are routinely removed surgically. They are typically slow- growing, well-vascularised, spherical tumours that, on a macro-scale, are a structurally uniform, hard elastic material. We present a multi-phase mathematical model of a fully vascularised myoma growing within a surrounding elastic tissue. Adopting a continuum approach, the model assumes the conservation of mass and momentum of four phases, namely cells/collagen, extracellular fluid, arterial and venous phases. The cell/collagen phase is treated as a poro-elastic material, based on a linear stress–strain relationship, and Darcy’s law is applied to describe flow in the extracellular fluid and the two vascular phases. The supply of extracellular fluid is dependent on the capillary flow rate and mean capillary pressure expressed in terms of the arterial and venous pressures. Cell growth and division is limited to the myoma domain and dependent on the local stress in the material. The resulting model consists of a system of nonlinear partial differential equations with two moving boundaries. Numerical solutions of the model successfully reproduce qualitatively the clinically observed three-phase “fast–slow–fast” growth profile that is typical for myomas. The results suggest that this growth profile requires stress-induced resistance to growth by the surrounding tissue and a switch-like cell growth response to stress. Analysis of large-time solutions reveal that while there is a functioning vasculature throughout the myoma, exponential growth results, otherwise power-law growth is predicted. An extensive survey of the effect of parameters on model solutions is also presented, and in particular, the enhanced growth caused by factors such as oestrogen is predicted by the model
    corecore