4,358 research outputs found

    A Model for the Production of Regular Fluorescent Light from Coherently Driven Atoms

    Get PDF
    It has been shown in recent years that incoherent pumping through multiple atomic levels provides a mechanism for the production of highly anti-bunched light, and that as the number of incoherent steps is increased the light becomes increasingly regular. We show that in a resonance fluorescence situation, a multi-level atom may be multiply coherently driven so that the fluorescent light is highly anti-bunched. We show that as the number of coherently driven levels is increased, the spontaneous emissions may be made increasingly more regular. We present a systematic method for designing the level structure and driving required to produce highly anti-bunched light in this manner for an arbitrary even number of levels.Comment: 6 pages multicol revtex, including figure

    Squashed States of Light: Theory and Applications to Quantum Spectroscopy

    Full text link
    Using a feedback loop it is possible to reduce the fluctuations in one quadrature of an in-loop field without increasing the fluctuations in the other. This effect has been known for a long time, and has recently been called ``squashing'' [B.C. Buchler et al., Optics Letters {\bf 24}, 259 (1999)], as opposed to the ``squeezing'' of a free field in which the conjugate fluctuations are increased. In this paper I present a general theory of squashing, including simultaneous squashing of both quadratures and simultaneous squeezing and squashing. I show that a two-level atom coupled to the in-loop light feels the effect of the fluctuations as calculated by the theory. In the ideal limit of light squeezed in one quadrature and squashed in the other, the atomic decay can be completely suppressed.Comment: 8 pages plus one figure. Submitted to JEOS-B for Dan Walls Special Issu

    Entanglement of formation for symmetric Gaussian states

    Full text link
    We show that for a fixed amount of entanglement, two-mode squeezed states are those that maximize Einstein-Podolsky-Rosen-like correlations. We use this fact to determine the entanglement of formation for all symmetric Gaussian states corresponding to two modes. This is the first instance in which this measure has been determined for genuine continuous variable systems.Comment: 4 pages, revtex

    Crossover of phase qubit dynamics in presence of negative-result weak measurement

    Full text link
    Coherent dynamics of a superconducting phase qubit is considered in the presence of both unitary evolution due to microwave driving and continuous non-unitary collapse due to negative-result measurement. In the case of a relatively weak driving, the qubit dynamics is dominated by the non-unitary evolution, and the qubit state tends to an asymptotically stable point on the Bloch sphere. This dynamics can be clearly distinguished from conventional decoherence by tracking the state purity and the measurement invariant (``murity''). When the microwave driving strength exceeds certain critical value, the dynamics changes to non-decaying oscillations: any initial state returns exactly to itself periodically in spite of non-unitary dynamics. The predictions can be verified using a modification of a recent experiment.Comment: 5 pages, 4 eps figure

    Outcoupling from a Bose-Einstein condensate with squeezed light to produce entangled atom laser beams

    Get PDF
    We examine the properties of an atom laser produced by outcoupling from a Bose-Einstein condensate with squeezed light. We model the multimode dynamics of the output field and show that a significant amount of squeezing can be transfered from an optical mode to a propagating atom laser beam. We use this to demonstrate that two-mode squeezing can be used to produce twin atom laser beams with continuous variable entanglement in amplitude and phase.Comment: 11 pages, 14 figure

    The two-level atom laser: analytical results and the laser transition

    Full text link
    The problem of the two-level atom laser is studied analytically. The steady-state solution is expressed as a continued fraction, and allows for accurate approximation by rational functions. Moreover, we show that the abrupt change observed in the pump dependence of the steady-state population is directly connected with the transition to the lasing regime. The condition for a sharp transition to Poissonian statistics is expressed as a scaling limit of vanishing cavity loss and light-matter coupling, κ0\kappa \to 0, g0g \to 0, such that g2/κg^2/\kappa stays finite and g2/κ>2γg^2/\kappa > 2 \gamma, where γ\gamma is the rate of atomic losses. The same scaling procedure is also shown to describe a similar change to Poisson distribution in the Scully-Lamb laser model too, suggesting that the low-κ\kappa, low-gg asymptotics is of a more general significance for the laser transition.Comment: 23 pages, 3 figures. Extended discussion of the paper aim (in the Introduction) and of the results (Conclusions and Discussion). Results unchange

    High efficiency tomographic reconstruction of quantum states by quantum nondemolition measurements

    Full text link
    We propose a high efficiency tomographic scheme to reconstruct an unknown quantum state of the qubits by using a series of quantum nondemolition (QND) measurements. The proposed QND measurements of the qubits are implemented by probing the the stationary transmissions of the dispersively-coupled resonator. It is shown that only one kind of QND measurements is sufficient to determine all the diagonal elements of the density matrix of the detected quantum state. The remaining non-diagonal elements of the density matrix can be determined by other spectral measurements by beforehand transferring them to the diagonal locations using a series of unitary operations. Compared with the pervious tomographic reconstructions based on the usual destructively projective (DP) measurements (wherein one kind of such measurements could only determine one diagonal element of the density matrix), the present approach exhibits significantly high efficiency for N-qubit (N > 1). Specifically, our generic proposal is demonstrated by the experimental circuit-quantumelectrodynamics (circuit-QED) systems with a few Josephson charge qubits.Comment: 9pages,4figure

    Robust quantum gates on neutral atoms with cavity-assisted photon-scattering

    Get PDF
    We propose a scheme to achieve quantum computation with neutral atoms whose interactions are catalyzed by single photons. Conditional quantum gates, including an NN-atom Toffoli gate and nonlocal gates on remote atoms, are obtained through cavity-assisted photon scattering in a manner that is robust to random variation in the atom-photon coupling rate and which does not require localization in the Lamb-Dicke regime. The dominant noise in our scheme is automatically detected for each gate operation, leading to signalled errors which do not preclude efficient quantum computation even if the error probability is close to the unity.Comment: 4 pages, 3 figure

    Measuring photon-photon interactions via photon detection

    Full text link
    The strong non-linearity plays a significant role in physics, particularly, in designing novel quantum sources of light and matter as well as in quantum chemistry or quantum biology. In simple systems, the photon-photon interaction can be determined analytically. However, it becomes challenging to obtain it for more compex systems. Therefore, we show here how to measure strong non-linearities via allowing the sample to interact with a weakly pumped quantized leaking optical mode. We found that the detected mean-photon number versus pump-field frequency shows several peaks. Interestingly, the interval between neighbour peaks equals the photon-photon interaction potential. Furthermore, the system exhibits sub-Poissonian photon statistics, entanglement and photon switching with less than one photon. Finally, we connect our study with existing related experiments.Comment: 4 pages, 3 figure

    Squeezing enhancement by damping in a driven atom-cavity system

    Get PDF
    In a driven atom-cavity coupled system in which the two-level atom is driven by a classical field, the cavity mode which should be in a coherent state in the absence of its reservoir, can be squeezed by coupling to its reservoir. The squeezing effect is enhanced as the damping rate of the cavity is increased to some extent.Comment: 3 pages and 3 figure
    corecore