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We examine the properties of an atom laser produced by outcoupling from a Bose-Einstein condensate with
squeezed light. We model the multimode dynamics of the output field and show that a significant amount of
squeezing can be transferred from an optical mode to a propagating atom laser beam. We use this to demon-
strate that two-mode squeezing can be used to produce twin atom laser beams with continuous variable
entanglement in amplitude and phase.
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I. INTRODUCTION

The experimental demonstration of Bose-Einstein con-
densates �BECs� �1� has led to the development of atom la-
sers by outcoupling atoms from trapped BECs by either a
radio frequency transition or a Raman transition to change
the internal state of the atom to one that is either untrapped
or antitrapped �2–10�. Atom lasers are coherent matter waves
with spectral fluxes many orders of magnitude higher than
thermal sources of atoms. The coherence of these sources
will enable an increase in the sensitivity of interferometric
measurements �11�. Although current experiments usually
operate in parameter regimes limited by technical noise, the
fundamental limit on these measurements will be caused by
the shot noise of the atomic field, which will be intrinsic to
all interferometers without a nonclassical atomic source.
Sensitivity is increased in optical interferometry by “squeez-
ing” the quantum state of the optical field, where the quan-
tum fluctuations in one quadrature are reduced compared to a
coherent state, while the fluctuations in the conjugate quadra-
ture are increased. In the context of atom optics, it is inter-
esting to ask whether highly squeezed atom optical sources
can be produced. There is also great interest in the produc-
tion of entangled atomic beams for quantum-information
processing and tests of quantum mechanics with massive
particles �12�. This paper will describe methods of coupling
the quantum statistics from optical fields to produce nonclas-
sical atomic sources with high efficiency.

Generation of squeezed atomic beams has been proposed
by either utilizing the nonlinear atomic interactions to create
correlated pairs of atoms via either molecular down-
conversion or spin exchange collisions �13–15�, or by trans-
ferring the quantum state of a squeezed optical field to the
atomic beam �17–19�. In the first case, it was shown that
collisions between two condensate atoms in the �MF=0� state
can produce one atom in �MF= +1� and one atom in
�MF=−1�, with sufficient kinetic energy to escape the trap
�13,14�. It was shown that this scheme produced pairs of
atoms entangled in atomic spin. In the second scheme a BEC
of molecules composed of bosonic atoms is disassociated to

produce twin atomic beams, analogous to optical down-
conversion �15�. It was shown that the beams were entangled
in the sense that phase and amplitude measurements on one
beam could infer phase and amplitude measurements of the
other beam better than the Heisenberg limit. Although each
atomic pair is perfectly correlated in direction in each of
these schemes, there is very little control of direction of each
pair, so the spectral flux would be limited.

The generation of nonclassical light is well established
experimentally �16�. This suggests that a nonclassical atom
laser output could be generated by transferring the quantum
state of an optical mode to an atomic beam. Moore et al.
showed that a quantized probe field could be partially trans-
ferred to momentum “side modes” of a condensate consist-
ing of three-level atoms in the presence of a strong pump
field �17�. Jing et al. performed a single-mode analysis of the
atom laser outcoupling process for a two-level atom interact-
ing with a quantized light field, and showed that the squeez-
ing in light field would oscillate between the light field and
the atomic field at the Rabi frequency �18�. As this was a
single-mode analysis, the interaction with the atoms as they
left the outcoupling region was not taken into account. Fleis-
chhauer et al. �19� showed that Raman adiabatic transfer can
be used to transfer the quantum statistics of a propagating
light field to a continuously propagating beam of atoms by
creating a polariton with a spatially dependent mixing angle,
such that the output contained the state of the probe beam.

In this paper, we model the dynamics of an atom laser
produced by outcoupling three-level atoms from a BEC via a
Raman transition, and investigate the transfer of quantum
statistics from one of the optical modes to the atomic field.
Ideal transfer will occur when the time taken for each atom
to leave the outcoupling region is a quarter of a Rabi period.
The finite momentum spread of a trapped condensate means
that there will be a broadening of the time taken to leave the
outcoupling region, and hence ideal transfer will not be pos-
sible. To determine the effectiveness of the quantum state
transfer, we require a multimode model that takes into ac-
count back coupling and the finite momentum spread of the
condensate.

In Sec. II we describe an atom laser beam made by out-
coupling from a BEC using a nontrivial optical mode, using
the simplest possible model that contains the spatial effects*Electronic address: simon.haine@anu.edu.au
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in the output mode. We derive the Heisenberg equations of
motion for this system under suitable approximations. Sec-
tion III introduces the method used to solve these equations
and investigates some properties of the outcoupled atoms,
showing that complicated spatial behavior occurs in the out-
put even when the optical and BEC fields are described by a
single mode. In Sec. IV we investigate continuous outcou-
pling with two-mode squeezing, and show that it can be used
to generate continuous variable entanglement in twin atom
laser beams propagating in different directions.

II. OUTCOUPLING USING A NONCLASSICAL
OPTICAL FIELD

When an atomic and an optical field are coupled, and they
can both be described by a single mode, then complete state
transfer must occur between them in a Rabi-like cycle. When
producing an atom laser beam in this manner, however, the
single-mode approximation cannot be made for the output
field, even though it may be applicable to the optical and
BEC fields. In this section we develop such a model, and
derive the Heisenberg equations of motion for the output
field and the optical field operators.

We model an atom laser in one dimension as a BEC of
three-level atoms coupled to free space via a Raman transi-
tion, as shown in Fig. 1. State �1� represents the internal state
of the trapped condensate, �3� the excited state, and �2� the
untrapped atomic mode. â13 is the annihilation operator for
the probe optical mode �transition �1�→ �3��, and â23 is the
annihilation operator for the pump optical mode �transition
�2�→ �3��. The pump field is assumed to be a large coherent
state, much stronger than the probe field, so it is approxi-
mated well by a classical field g23â23=�23

* e−i��−�2�t. The
Hamiltonian for the system �in the rotating-wave approxima-
tion� is

Ĥ = Ĥatom + Ĥlight + Ĥatom-light =� �̂1
†�k�H0�̂1�k�dk

+
�2

2m
� k2�̂2

†�k��̂2�k�dk +� �̂3
†�k���2k2

2m
+ ��	�̂3�k�dk

+ ��� − �1�â13
† â13 + �g13� �̂1�k��̂3

†�k + k13�â13

+ �̂1
†�k��̂3�k + k13�â13

† dk + �� �23�̂2
†�k��̂3�k + k23�

�ei��−�2�t + �23
* �̂2�k��̂3

†�k + k23�e−i��−�2�tdk �1�

where �̂1�k� is the k-space annihilation operator the conden-

sate mode �internal state �1��, �̂3�k� is the annihilation opera-

tor for atoms in the excited atomic state ��3��, and �̂2�k� is the
annihilation operator for the untrapped free propagating
mode ��2��. The annihilation operators obey the usual
bosonic commutation relations:

��̂i�k�, �̂ j�k��� = ��̂i
†�k�, �̂ j

†�k��� = 0,

��̂i�k�, �̂ j
†�k��� = 	ij	�k − k�� . �2�

H0 is the single-particle Hamiltonian for the trapped atoms,
m is the mass of the atoms, �23 is the Rabi frequency for the
pump transition, g13 is the coupling strength between the
atom and the probe field, �� is the internal energy of the
excited state �3� atoms, and �k13 and �k23 are the momentum
kicks due to the pump and probe light fields, respectively.
For simplicity we have assumed a laser geometry where the
pump and probe fields are counterpropagating, to give the
maximum possible momentum kick to the untrapped atoms.
The equations of motion for the Heisenberg operators are

i�̂
˙

1�k� =
H0

�
�̂1�k� + g�̃3�k + k13�â†, �3�

i�̂
˙

2�k� =
�k2

2m
�̂2�k� + �23�̃3�k + k23� , �4�

i�̃
˙

3�k� = ��k2

2m
+ �2	�̃3�k� + g13�̂1�k − k13�â + �23

* �̂2�k − k23� ,

�5�

iȧ̂ = 	â + g13� �̂1
†�k − k13��̃3�k�dk , �6�

where �̃3= �̂3ei��−�2�t and â= â13e
i��−�2�t, and 	= ��2−�1� is

the two-photon detuning.
The population of state �3� will be much less than the

other levels when the detunings ��1 ,�2� are much larger
than the other terms in the system �including the kinetic en-
ergy of the excited state atoms�. Furthermore, most of the
dynamics will occur on time scales less than 1/�2, so in this

regime we can set �̃3�k , t�
�−1/�2��g13�̂1�k−k13, t�â
+�23

* �̂2�k−k13, t��. If the condensate has a large number of
atoms and is approximately in a coherent state, we can write

FIG. 1. Internal energy levels of a three-level atom. A conden-
sate of state �1� atoms confined in a trapping potential is coupled to
free space via a Raman transition affected by a probe beam �anni-
hilation operator â13� which is detuned from the excited state �3� by
an amount �1, and a pump field �annihilation operator â23� which is
detuned from the excited state by an amount �2.
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�̂1�k , t�
�N
0�k�e−i�tt, where 
0�k� is the condensate wave
function �which we will assume is in the ground state of the
harmonic oscillator, with �t the trapping frequency� and N is
the condensate number. We have ignored the atom-atom in-
teractions in our model, which is valid only if the condensate
is dilute. Strong atom-atom interactions would have the ef-
fect of introducing complicated evolution to the quantum
state of the condensate mode. Inclusion of these effects is not
possible with our method, and a more complicated technique
such as a phase-space method would be required �20�. The
approximation of ignoring the back action on the condensate
is only valid if we are in the regime where the outcoupling is
weak, i.e., the number of photons in the probe field is much
less than the number of atoms in the condensate. In an ex-
periment, measuring the quantum noise on the atom laser
beam would require small classical noise on the beam, and in
practice this is easier to achieve with weak outcoupling. With
these approximations our equations of motion for the free
propagating atoms and the probe field become

i�̂
˙ �k� = �0�k��̂�k� − �0�k�â , �7�

iȧ̂ = �aâ −� �0
*�k��̂�k�dk , �8�

with �̂�k�= �̂2�k�ei�tt, �0�k�= ��k2 /2m− ��23�2 /�2−�t�, �a

= �	−g13
2 N /�2�, and �0�k�=g13

�N��23/�2�
0�k+k23−k13�.
In the next section we will discuss the solution to these

equations and the properties of the outcoupled atoms.

III. PROPERTIES OF THE OUTCOUPLED ATOMS

The solution to Eqs. �7� and �8� is

�̂�k,t� =� f�k,k�,t��̂s�k�dk� + g�k,t�âs, �9�

â�t� = p�t�âs +� q�k�,t��̂s�k��dk�, �10�

where âs= â�t=0� and �̂s�k�= �̂�k , t=0� are the Schrödinger
picture operators, and f�k ,k� , t�, g�k , t�, p�t�, and q�k� , t� are
complex functions satisfying

i ḟ�k,k�� = �0�k�f�k,k�� − �0�k�q�k�� ,

iġ�k� = �0�k�g�k� − �0�k�p ,

iṗ = �ap −� �0
*�k�g�k�dk ,

iq̇�k�� = �aq�k�� −� �0
*�k�f�k,k��dk , �11�

with initial conditions f�k ,k� , t=0�=	�k−k��, p�t=0�=1, and

g�k , t=0�=q�k� , t=0�=0. This ansatz has reduced the field
operator equations to a set of coupled partial differential
equations. This will only be possible for Heisenberg equa-
tions of motion that do not have terms with products of op-
erators, but it allows the possibility of an analytic or numeri-
cal solution to the full quantum problem.

Physically, f�k ,k� , t� represents the component of the out-
coupled atoms with momentum k that has the quantum sta-
tistics of initial atomic field with moment k�. If the initial
state of the atomic field is the vacuum �which we will as-
sume it is for the rest of this paper�, then �f�k ,k� , t�dk� rep-
resents the vacuum component of the outcoupled atoms.
g�k , t� represents the component of the outcoupled atomic
field that takes on the quantum statistics of the initial optical
field. p�t� represents the component of optical field that
maintains the quantum statistics of the initial optical field,
and �q�k� , t�dk� represents the component of the optical field
that takes on the quantum statistics of the initial atomic field,
i.e., the vacuum that is added to the optical field as a result of
the outcoupling process.

We solved Eqs. �11� numerically using a fourth-order
Runge-Kutta algorithm using the XMDS numerical
package �21�. We chose parameters realistic to atoms
optics experiments with 87Rb atoms. Unless stated otherwise,
we have set m=1.4�10−25 kg, �t=0.25 rad s−1, �k23−k13�
=1.6�107 m−1, which corresponds to twice the wave num-
ber of the 2S1/2 ,F=2→ 2P3/2 ,F=3 transition in 87Rb. 
0�k�
was chosen to be the �normalized� ground-state momentum-
space wave function of a condensate �ignoring interactions�
in a harmonic trap, and we set �0�k�=�
0�k−k23−k13� with

FIG. 2. �f�k ,k� , t=0.11s��2 for the values of parameters indicated
in the text. kkick is the kick acquired due to the Raman transition,
i.e., kkick=k23−k13. The function was discretized for numerical cal-
culation by replacing 	�k−k�� with 	k,k� /�k, where �k is the grid
spacing. The dip in the function near the k=kkick resonance shows
how the quantum state of the atoms has been affected by the inter-
action with the optical fields. The region of f�k ,k�� sufficiently far
away from kkick remains diagonal, indicating that the quantum state
of the atomic field far from kkick has not been affected by the out-
coupling process.
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�=90 rad s−1. The results are reasonably insensitive to the
absolute magnitude of �a and �0, but they are quite sensitive
to the relative values. To maintain resonance between the
two fields, we set ��23�2 /�2=��k23−k13�2 /2m−�a−�t.
These relationships can be obtained with physically realistic
parameters and are consistent with the approximations made
in this model. We set �a=20 rad s−1.

Figures 2–5 show the solutions to Eqs. �11� for the values
indicated above.

The solution of Eqs. �11� gives us the solution of Eqs. �9�
and �10� for all possible initial quantum states of the optical
field and the freely propagating atomic field. We will assume
that the initial state of the field is ����light� � ��0��k, where
�light� represents an arbitrary state for the optical mode,
and ��0��k represents a vacuum mode at all points in k
space for the atomic field. The expectation value of

the density of outcoupled atoms ��̂†�x��̂�x�� with �̂�x�
= �1/�2��� �̂�k�eikxdk is

��̂†�x��̂�x�� = �G�x��2�âs
†âs�, G�x� =

1
�2�

� g�k�eikxdk .

�12�

It is interesting to note that when the initial state of the un-
trapped atomic field is the vacuum, then the spatial structure
of the density of the untrapped atoms at later times depends
only on the functional form of G�x�, which depends on the
efficiency of the outcoupling process. Figure 6 show the den-
sity of outcoupled atoms when the expectation value of the
initial number of photons is �âs

†âs�=1000.

The number operator is N̂=��̂†�x��̂�x�dx. Using our so-
lution �Eq. �9�� and our initial state, the expectation value is

�N̂�= �âs
†âs�� �G�x��2dx. The variance of the number operator

is

FIG. 3. �Color online� �g�k , t��2 as found numerically for the
values of parameters indicated in the text. This shows that atoms are
created around k=kkick with a quantum state related to the initial
state of the probe field.

FIG. 4. �p�t��2 as found numerically for the values of parameters
indicated in the text. The decay of p�t� represents the decay of the
initial optical state due to the outcoupling process.

FIG. 5. �Color online� �q�k� , t��2 as found numerically for the
values of parameters indicated in the text. �q�k� , t�dk� represents
the amount of vacuum that is added to the initial state of the optical
field due to the outcoupling process.

FIG. 6. �Color online� ��̂†�x��̂�x�� for �âs
†âs�=1000.
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V�N̂� = �N̂2� − �N̂�2

=� � ��̂†�x���̂�x���̂†�x��̂�x��dx dx�

− �� ��̂†�x��̂�x��dx	2

=� � ��̂†�x���̂†�x��̂�x���̂�x��dx dx�

+� ��̂†�x��̂�x��dx − �� ��̂†�x��̂�x��dx	2

.

�13�

Using our solution �Eq. �9�� and our initial state, this be-
comes

V�N̂� = NG
2 ��âs

†âs
†âsâs� − �âs

†âs�2� + NG�âs
†âs�

= NG
2 V�âs

†âs� + NG�1 − NG��âs
†âs� , �14�

with NG=��G�x��2dx. We note that as NG→1, the variance in
the number of outcoupled atoms approaches the variance of
the initial optical mode, as the quantum statistics of the out-
coupled atoms depends only on the initial quantum state of
the optical field and the efficiency of the outcoupling pro-
cess. Figure 7 shows the variance of the outcoupled atoms
versus time for different states of the optical mode. A more
interesting observable to look at is the flux of the outcoupled
atoms, as the spatial structure of the outcoupled beam be-
comes apparent. The flux operator is

Ĵ�x� =
i�

2m
���̂†�x��̂�x� − �̂†�x� � �̂�x�� �15�

which, using our solution for �̂�k�, becomes

Ĵ�x� =� � Jf�x,k�,k���̂s
†�k���̂s�k��dk�dk� + Jg�x�âs

†âs

+� Jfg�x,k���̂s
†�k��âsdk� +� Jgf�x,k���̂s�k��âs

†dk�

�16�

with

Jf�x,k�,k�� =
i�

2m
��F*�x,k��F�x,k�� − F*�x,k�� � F�x,k��� ,

Jg�x� =
i�

2m
��G*�x�G�x� − G*�x� � G�x�� ,

Jfg�x,k�� =
i�

2m
��F*�x,k��G�x� − F*�x,k�� � G�x�� ,

Jgf�x,k�� =
i�

2m
��G*�x�F�x,k�� − G*�x� � F�x,k��� ,

and with F�x ,k��= �1/�2��� f�k ,k��eikxdk.
Using our initial state ���= �light� � ��0��k, the expectation

value of the flux operator becomes

�Ĵ�x�� = Jg�x��âs
†âs� . �17�

This shows that the mean atom flux in the output pulse de-
pends only on the details of the coupling process, and not on
the statistics of the outcoupling field. Figure 8 shows the flux
of outcoupled atoms for �âs

†âs�=1000.
To investigate how the quantum statistics are transferred

to the atomic beam, we look at the variance in the flux.

FIG. 7. The relative variance v�N̂�=V�N̂� / �N̂� for the out-
coupled atoms versus time for different states of the optical field.
The solid line represents the initial optical mode in a coherent state
�� with ��2=1000, the dotted line represents a squeezed state � ,r�
with ��2=1000, r=1.38, and the dashed line represents a Fock state
�n� with n=1000.

FIG. 8. Flux of outcoupled atoms at a point in the atomic beam
�x=1.5 mm� for �âs

†âs�=1000.
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V�Ĵ� = �Ĵ2� − �Ĵ�2 = Jg
2�âs

†âsâs
†âs� − Jg

2�âs
†âs�2

+� � Jgf�x,k��Jfg�x,k���âs
†�̂s�k��âs�̂s

†�k���dk�dk�

�18�

=Jg
2V�âs

†âs� + �âs
†âs� � Jgf�x,k��Jfg�x,k��dk�. �19�

The variance in the flux has two terms, one proportional to
the variance in the photon number, and the other proportional
to the photon number itself. For a Fock state photonic input
the first of those terms is zero, and the variance is propor-
tional to the function �Jgf�x ,k�Jfg�x ,k�dk. This can be con-
trasted with the case where the optical field is in a coherent
state, and the total variance in the flux is simply proportional
to the function Jg

2+�Jgf�x ,k�Jfg�x ,k�dk. A reasonable mea-
sure of the transfer of the quantum state of the zero-
dimensional photon field to the larger space of the output
pulse is therefore the function

v�Ĵ� =
� Jgf�x,k��Jfg�x,k��dk�

Jg
2 +� Jgf�x,k�Jfg�x,k�dk

, �20�

which shows the minimum possible variance in the output
flux normalized to the flux variance produced by output with
a coherent optical state.

Figure 9 shows v�Ĵ� for different values of the coupling
constant �. Even in our simplified model where we have
assumed a single mode for the optical beam and the conden-
sate, the outcoupled atoms still display complicated spatio-
temporal dynamics. Weak outcoupling gives a steady flux,

but very little suppression of the shot noise because the tim-
ing of the output of each atom becomes uncertain, making
the number statistics uncertain in the transient period. When
the outcoupling rate is increased, a significant amount of flux
squeezing is displayed in a localized pulse. Further increase
of the outcoupling rate shows more complicated dynamics,
as some of the outcoupled atoms are coupled back into the
condensate. This causes the atoms to come out in a series of
pulses, with less flux squeezing than for optimal outcoupling.
An interesting sidenote is that the flux variance produced by
the coherent optical state �the denominator of v�Ĵ�� is simply
proportional to the flux itself, with the same proportionality
constant for all times, and all values of �. Although the
variance in the number of the pulse is quite insensitive to the
strength of the coupling between the trapped and untrapped
fields, this is not true for the variance in the flux. Figure 10
shows the maximum suppression of shot noise in v�Ĵ� for
different values of �. We can estimate the outcoupling that
will produce the minimum v�Ĵ� by finding the maximum
Rabi frequency that will not cause significant back-coupling
to the condensate. Equating the quarter period of a Rabi os-
cillation TRabi /4=� / �2��, with the time taken for the
kicked atoms to leave the coupling region Tleave

=�8� /m�tm / ���k23−k13�� where �8� /m�t is the
spatial width of the condensate. From this we can
estimate that optimum outcoupling will occur when
�
���k23−k13� /4m�2� /m�t
250 rad s−1 for the param-
eters used in this paper. This agrees well with the calculated
minimum shown in Fig. 10.

FIG. 9. v�Ĵ� at a point in the path of the atomic beam
�x=1.5 mm� for �=18 �dotted line�, 144 �solid line�, and
270 rad s−1 �dashed line�. Coupling weakly produces a long pulse,
but the variance in the flux is almost unaffected by the statistics of
the optical state. Coupling too strongly causes significant back cou-
pling from the output field to the photonic state.

FIG. 10. Minimum value of v�Ĵ� versus �. The shot noise is
below the vacuum noise for all values of � when using a Fock state
to outcouple. For low coupling strengths, very little of the optical
state is transferred to the out coupled atoms, so the squeezing is
minimal. When the coupling strength is too strong, there is signifi-
cant back coupling of atoms which limits the flux, and hence de-
grades the squeezing. The finite momentum spread of the conden-
sate means that there is a spread in the time taken for an atom to
leave the outcoupling region, so even at the optimum Rabi fre-
quency, there will not be complete transfer of the optical state to the
atomic field. This limits the amount of squeezing that can be trans-
ferred to the atomic field.
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The finite momentum spread of the condensate means that
there is a spread in the time taken for an atom to leave the
outcoupling region, so even at the optimum Rabi frequency,
there will not be complete transfer of the optical state to the
atomic field. This limits the amount of squeezing that can be
transferred to the atomic field.

We have shown that the quantum statistics of an optical
mode can be transferred to an atom laser beam to produce a
pulse of atoms with better defined number, or to partially
suppress the fluctuations in the flux. Furthermore, we have
shown that the quantum statistics of the optical mode can be
transferred independent of the initial quantum state of the
optical mode, which suggests that two-mode optical squeez-
ing could be used to generate spatially separated entangled
atomic beams. In the next section we investigate the possi-
bility of using twin optical beams produced from a nonde-
generate optical parametric oscillator to generate two en-
tangled atomic beams propagating in different directions.

IV. EINSTEIN-PODOLSKY-ROSEN BEAMS

Continuous wave generation of correlated atom beams re-
quires a more complicated scheme. We consider a probe field
created by a nondegenerate optical parametric oscillator
�OPO� producing twin optical beams �Fig. 11�. These modes
have the same wavelength, but travel in different directions
and hence they have different momenta. The OPO is driven
by a classical, nondepletable driving field. This will produce
twin atom laser beams with different momenta. This differs
from the previous case in that it allows continuous outcou-
pling of the atoms, rather than just a pulse. The Hamiltonian
for the system is now

Ĥ = Ĥatom + ��� − �1�â1
†â1 + ��� − �1�â2

†â2

+ ����â1
†â2

†e−i�pt + �*â1â2ei�pt� + �g13� �̂1�k�

��̂3
†�k + k1�â1 + �̂1

†�k��̂3�k + k1�â1
†dk + �g13� �̂1�k�

��̂3
†�k + k2�â2 + �̂1

†�k��̂3�k + k2�â2
†dk + �� �23�̂2

†�k�

��̂3�k + k0�ei��−�2�t + �23
* �̂2�k��̂3

†�k + k0�e−i��−�2�tdk

�21�

where â1 and â2 represent the annihilation operators for the
twin probe fields produced from the down-conversion pro-
cess, both assumed to affect the �1�→ �3� transition, � is the
complex amplitude of the pump field, �p is the frequency of
the pump, and � is the nonlinear coefficient of the down
conversion medium. �k1 and �k2 are the magnitudes of the
momentum kicks due to absorption from photons in â1 and
â2 respectively. We have assumed that the photons are reso-
nant in an optical resonator with 100% reflective mirrors.
This assumption is valid as the dominant form of loss out of
the cavity will be due to atomic absorption. For computa-
tional convenience in our one-dimensional model, we have
chosen k1−k0=−�k2−k0�, i.e., the resultant momentum

kicks that the atoms obtain after being outcoupled are of
equal magnitude and opposite direction. By adiabatically
eliminating the excited state, and assuming the condensate is
a large coherent state as before, we obtain the following
equations of motion for the outcoupled atoms and the probe
fields:

i�̂
˙ �k� = �0�k��̂�k� − �1�k�ã1 + �2�k�ã2, �22�

iȧ̃1 = �aã1 −� �1
*�k��̂�k�dk + ��ã2

†ei�2��−�2�−�p�t − �Cã2,

�23�

iȧ̃2 = �aã2 −� �2
*�k��̂�k�dk + ��ã1

†ei�2��−�2�−�p�t − �C
* â1

�24�

with �̂�k�= �̂2�k�ei�tt, ãj = âje
i��−�2�t, � j�k�

=g�N�� /�2�
0�k+k0−kj� for j=1, 2, and �C

= �g2N /�2��
0
*�k−k1�
0�k−k2�dk. The �C cross-coupling

term between the two optical modes is due to atoms absorb-
ing a photon from one beam and emitting it into the other
beam. This term will be small due to the large momentum
difference between the two modes. However, the functional
form of �C is due to our assumption that the condensate
remains single mode. Cross coupling between the two optical
modes will cause momentum “side bands” on the condensate
mode �17�, but the effect of this cross coupling will be small
if the number of photons in the probe beam is small com-
pared to the number of atoms in the condensate. As the re-
sults in this section are calculated in a parameter regime
where the chance of an outcoupled atom coupling back into
the condensate is low, it is valid to neglect this term in our
calculations. The general solution to Eqs. �22� is

�̂�k,t� =� f+�k,k�,t��̂s�k�dk� +� f−�k,k�,t��̂s
†�k�dk�

+ g1+�k,t�â1s + g1−�k,t�â1s
† + g2+�k,t�â2s + g2−�k,t�â2s

† ,

�25�

FIG. 11. �Color online� Twin atom laser beams produced by
outcoupling with two-mode squeezed light. An OPO is driven by a
classical, nondepletable driving field ���. The ��2� process produces
two optical modes â1 and â2, which are used to outcouple the atom
laser beams.
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â1�t� = p1+�t�â1s + p1−�t�â1s
† + p2+�t�â2s + p2−�t�â2s

†

+� p3+�k�,t��̂s�k��dk� +� p3−�k�,t��̂s
†�k��dk�,

�26�

â2�t� = q1+�t�â1s + q1−�t�â1s
† + q2+�t�â2s + q2−�t�â2s

†

+� q3+�k�,t��̂s�k��dk� +� q3−�k�,t��̂s
†�k��dk�,

�27�

where f±�k ,k� , t�, g1,2±�k , t�, p1,2±�t�, p3±�k� , t�, q1,2±�t�, and
q3±�k� , t� are complex functions satisfying differential equa-
tions obtained by substituting the solutions �25� into �22�
�see the Appendix�. From the solution of these equations, we
can calculate any observable of the system.

We solved Eqs. �A1� numerically for ��=80 s−1, � j�k�
=�
0�k−k0−kj� with �=108 rad s−1 for j=1,2. We set
k1−k0=−�k2−k0�=1.6�107 m−1, and �p−2��−�2�=2�a,
with all other parameters as before. If we assume that the two
optical modes and the untrapped atomic field are initially in
the vacuum state, using Eq. �25� the expectation value of the

atomic density ��x�= ��̂†�x��̂�x�� is

��x� = ��̂†�x��̂�x�� =� �F−�x,k���2dk� + �G1−�x��2 + �G2−�x��2

�28�

where F−�x ,k��= �1/�2��� f−�k ,k��eikxdk, G1−�x�
= �1/�2���g1−�k�eikxdk and G2−�x�= �1/�2���g2−�k�eikxdk.
Figure 12 shows the atomic density versus time. Two atomic
beams in opposite directions are produced, with steady flux.
To check whether there are correlations present in the two
atomic beams, the relevant observable is the difference in the
flux of the two beams. If the two beams are completely un-
correlated, then we would expect

V„Ĵ�x0� − Ĵ�− x0�… � 2V„Ĵ�x0�… , �29�

where V(Ĵ�x�) represents the renormalized variance of the
flux, which has been truncated at high values of k due the
finite grid spacing. x0 and −x0 are points that lie in the
rightward- and leftward-propagating beams, respectively.
Figure 13 shows the variance of the flux difference

V(Ĵ�x0�− Ĵ�−x0�) versus time, and shows that the fluctuations
in the difference are approximately eight times less than for
uncorrelated atoms. The continuous wave nature of the out-
coupling means that the atomic output becomes approxi-
mately monochromatic, leading to more efficient quantum
state transfer than we saw in the case of a pulsed atomic
output.

We now investigate whether we can use this process to
generate entanglement between the two atomic beams. We
quantify our entanglement using the Einstein-Podolsky-
Rosen �EPR� criterion of Reid and Drummond �22�, the re-
quirement being that two conjugate variables on one of the
beams can be inferred from measurements on the other beam
to below the quantum limit. We define four quadratures:

X̂± =� �L±
*�x��̂�x� + L±�x��̂†�x��dx , �30�

Ŷ± = i� �L±
*�x��̂�x� − L±�x��̂†�x��dx �31�

with

L±�x,t� = � ei�k0x−�at�

��x1 − x2�
if ± x1 � x � ± x2,

0 otherwise.
� �32�

The commutator of the conjugate quadratures gives us the

uncertainty relation V�X̂±�V�Ŷ±��1 since ��L±�x��2dx=1.
The beams are entangled under the EPR criterion if by

FIG. 12. �Color online� Density of outcoupled atoms versus
time. Outcoupling using light from a nondegenerate OPO produces
two atomic beams in opposite directions, with steady flux. FIG. 13. Variance in the flux difference. The fluctuations are

eight times smaller than for uncorrelated atoms.
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making measurements of quadratures of one beam �e.g., X̂+

and Ŷ+�, then quadratures of the other beam �X̂− and Ŷ−� can
be inferred to better than this quantum limit. Quantitatively,

Vinf�X̂−�Vinf�Ŷ−��1 is the requirement for entanglement,

where Vinf�X̂±�=V�X̂±�− �V�X̂± , Ŷ���2 /V�Ŷ��, Vinf�Ŷ±�
=V�Ŷ±�− �V�Ŷ± , X̂���2 /V�X̂��, and V�a ,b�= �ab�− �a��b�. We
note here that the correlations present are between conjugate
quadratures of each beam. Figure 14 shows the product of

the inferred variances Vinf�X̂−�Vinf�Ŷ−� plotted against time.
As the intensity of the beams increase and become more
monochromatic, the product of the inferred variances dip
well below the requirement for entanglement. The initial in-
crease is due to the beams initially not approximating plane
waves. This could be fixed by appropriate choice of L±�x�, to
better match the mode shape of the output atom laser beams.
In the long-time limit, the product of the inferred variances is
on the order of three orders of magnitude below the classical
limit, demonstrating that this system produces an almost pure
EPR correlated state. Our model uses an ideal OPO, so the
squeezing in the optical modes would grow without bound in
the absence of the damping due to the atoms. In practice, the
entanglement on the atomic beams will not exceed the opti-
cal entanglement that can be obtained from a real OPO. The
limit to the entanglement between the atomic beams in this
model is given by the finite momentum width of the conden-
sate. As the EPR state is expected to be very pure, the domi-
nant noise in an experiment may actually be due to some of
the effects we have ignored in our model due to their small
effect on the dynamics. In particular, there may be a small
reduction in fidelity due to effects of the back action of the
outcoupling on the condensate wave function, which we
have ignored in this calculation.

V. CONCLUSION

We have modeled the dynamics of an atom laser produced
by outcoupling from a Bose-Einstein condensate with

squeezed light. We modeled the multimode dynamics of the
output field and showed that a significant amount of squeez-
ing can be transferred from an optical mode to a propagating
atom laser beam. We also demonstrated that two-mode
squeezing can be used to produce twin atom laser beams
with continuous variable entanglement in amplitude and
phase.
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APPENDIX

f+�k ,k� , t�, f−�k ,k� , t�, g1+�k , t�, g1−�k , t�, g2+�k , t�,
g2−�k , t�, p1+�t�, p1−�t�, p2+�t�, p2−�t�, p3+�k� , t�, p3−�k� , t�,
q1+�t�, q1−�t�, q2+�t�, q2−�t�, q3+�k� , t�, q3−�k� , t�, must satisfy

i ḟ+�k,k�� = �0�k�f+�k,k�� − �1�k�p3+�k�� − �2�k�q3+�k�� ,

i ḟ−�k,k�� = �0�k�f−�k,k�� − �1�k�p3−�k�� − �2�k�q3−�k�� ,

iġ1+�k� = �0�k�g1+�k� − �1�k�p1+ − �2�k�q1+,

iġ1−�k� = �0�k�g1−�k� − �1�k�p1− − �2�k�q1−,

iġ2+�k� = �0�k�g2+�k� − �1�k�p2+ − �2�k�q2+,

iġ2−�k� = �0�k�g2−�k� − �1�k�p2− − �2�k�q2−,

iṗ1+ = �ap1+ −� �1
*�k�g1+�k�dk + �pq1−

* ,

iṗ1− = �ap1− −� �1
*�k�g1−�k�dk + �pq1+

* ,

iṗ2+ = �ap2+ −� �1
*�k�g2+�k�dk + �pq2−

* ,

iṗ2− = �ap2− −� �1
*�k�g2−�k�dk + �pq2+

* ,

iṗ3+�k�� = �ap3+�k�� −� �1
*�k�f+�k,k��dk + �pq3−

* �k�� ,

iṗ3−�k�� = �ap3−�k�� −� �1
*�k�f−�k,k��dk + �pq3+

* �k�� ,

iq̇1+ = �aq1+ −� �1
*�k�g1+�k�dk + �pp1−

* ,

iq̇1− = �aq1− −� �1
*�k�g1−�k�dk + �pp1+

* ,

FIG. 14. Product of the inferred variances Vinf�X̂−�Vinf�Ŷ−� ver-
sus time. As the system goes to steady state, the requirement for
entanglement is satisfied.
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iq̇2+ = �aq2+ −� �1
*�k�g2+�k�dk + �pp2−

* ,

iq̇2− = �aq2− −� �1
*�k�g2−�k�dk + �pp2+

* ,

iq̇3+�k�� = �aq3+�k�� −� �1
*�k�f+�k,k��dk + �pp3−

* �k�� ,

iq̇3−�k�� = �aq3−�k�� −� �1
*�k�f−�k,k��dk + �pp3+

* �k�� ,

�A1�

with �p=��ei�2��−�2�−�p�t, and initial conditions f+�k ,k� , t
=0�=	�k−k�� , p1+�t=0�=1,q2+�t=0�=1, with all other fields
zero. From the solution of these equations, we can calculate
any observable of the system.
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