106 research outputs found

    Teaching Computation in Neuroscience: Notes on the 2019 Society for Neuroscience Professional Development Workshop on Teaching

    Get PDF
    The 2019 Society for Neuroscience Professional 1Development Workshop on Teaching reviewed current tools, approaches, and examples for teaching computation in neuroscience. Robert Kass described the statistical foundations that students need to properly analyze data. Pascal Wallisch compared MATLAB and Python as programming languages for teaching students. Adrienne Fairhall discussed computational methods, training opportunities, and curricular considerations. Walt Babiec provided a view from the trenches on practical aspects of teaching computational neuroscience. Mathew Abrams concluded the session with an overview of resources for teaching and learning computational modeling in neuroscience

    Cerebrospinal Fluid NLRP3 is Increased After Severe Traumatic Brain Injury in Infants and Children

    Get PDF
    Background: Inflammasome-mediated neuroinflammation may cause secondary injury following traumatic brain injury (TBI) in children. The pattern recognition receptors NACHT domain-, Leucine-rich repeat-, and PYD-containing Protein 1 (NLRP1) and NLRP3 are essential components of their respective inflammasome complexes. We sought to investigate whether NLRP1 and/or NLRP3 abundance is altered in children with severe TBI. Methods: Cerebrospinal fluid (CSF) from children (n = 34) with severe TBI (Glasgow coma scale score [GCS] ≤8) who had externalized ventricular drains (EVD) placed for routine care was evaluated for NLRP1 and NLRP3 at 0-24, 25-48, 49-72, and >72 h post-TBI and was compared to infection-free controls that underwent lumbar puncture to rule out CNS infection (n = 8). Patient age, sex, initial GCS, mechanism of injury, treatment with therapeutic hypothermia, and 6-month Glasgow outcome score were collected. Results: CSF NLRP1 was undetectable in controls and detected in 2 TBI patients at only 4 (15.50 [3.65-25.71] vs. 3.04 [1.52-8.87] ng/mL, respectively; p = 0.048). Controlling for initial GCS in multivariate analysis, peak NLRP3 >6.63 ng/mL was independently associated with poor outcome at 6 months. Conclusions: In the first report of NLRP1 and NLRP3 in childhood neurotrauma, we found that CSF NLRP3 is elevated in children with severe TBI and independently associated with younger age and poor outcome. Future studies correlating NLRP3 with other markers of inflammation and response to therapy are warranted

    Decline of Leach’s Storm Petrels Hydrobates leucorhous at the largest colonies in the northeast Atlantic

    Get PDF
    Leach’s Storm Petrel Hydrobates leucorhous has undergone substantial population declines at North Atlantic colonies over recent decades, but censusing the species is challenging because it nests in burrows and is only active at colonies at night. Acoustic playback surveys allow birds present in nest sites to be detected when they respond to recordings of vocalisations. However, not all birds respond to playback on every occasion, response rate is likely to decline with increasing distance between the bird and the playback location, and the observer may not detect all responses. As a result, various analysis methods have been developed to measure and correct for these imperfect response and detection probabilities. We applied two classes of methods (calibration plot and hierarchical distance sampling) to acoustic survey data from the two largest colonies of breeding Leach’s Storm Petrels in the northeast Atlantic: the St Kilda archipelago off the coast of northwest Scotland, and the island of Elliðaey in the Vestmannaeyjar archipelago off the southwest of Iceland. Our results indicate an overall decline of 68% for the St Kilda archipelago between 2000 and 2019, with a current best estimate of ~8,900 (95% CI: 7,800–10,100) pairs. The population on Elliðaey appears to have declined by 40 –49% between 1991 and 2018, with a current best estimate of ~5,400 (95% CI: 4,300–6,700) pairs. We also discuss the relative efficiency and precision of the two survey methods

    Decline of Leach’s Storm Petrels Hydrobates leucorhous at the largest colonies in the northeast Atlantic

    Get PDF
    Leach’s Storm Petrel Hydrobates leucorhous has undergone substantial population declines at North Atlantic colonies over recent decades, but censusing the species is challenging because it nests in burrows and is only active at colonies at night. Acoustic playback surveys allow birds present in nest sites to be detected when they respond to recordings of vocalisations. However, not all birds respond to playback on every occasion, response rate is likely to decline with increasing distance between the bird and the playback location, and the observer may not detect all responses. As a result, various analysis methods have been developed to measure and correct for these imperfect response and detection probabilities. We applied two classes of methods (calibration plot and hierarchical distance sampling) to acoustic survey data from the two largest colonies of breeding Leach’s Storm Petrels in the northeast Atlantic: the St Kilda archipelago off the coast of northwest Scotland, and the island of Elliðaey in the Vestmannaeyjar archipelago off the southwest of Iceland. Our results indicate an overall decline of 68% for the St Kilda archipelago between 2000 and 2019, with a current best estimate of ~8,900 (95% CI: 7,800–10,100) pairs. The population on Elliðaey appears to have declined by 40 –49% between 1991 and 2018, with a current best estimate of ~5,400 (95% CI: 4,300–6,700) pairs. We also discuss the relative efficiency and precision of the two survey methods

    Prediction models for diagnosis and prognosis of covid-19: : systematic review and critical appraisal

    Get PDF
    Readers’ note This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity. Funding: LW, BVC, LH, and MDV acknowledge specific funding for this work from Internal Funds KU Leuven, KOOR, and the COVID-19 Fund. LW is a postdoctoral fellow of Research Foundation-Flanders (FWO) and receives support from ZonMw (grant 10430012010001). BVC received support from FWO (grant G0B4716N) and Internal Funds KU Leuven (grant C24/15/037). TPAD acknowledges financial support from the Netherlands Organisation for Health Research and Development (grant 91617050). VMTdJ was supported by the European Union Horizon 2020 Research and Innovation Programme under ReCoDID grant agreement 825746. KGMM and JAAD acknowledge financial support from Cochrane Collaboration (SMF 2018). KIES is funded by the National Institute for Health Research (NIHR) School for Primary Care Research. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. GSC was supported by the NIHR Biomedical Research Centre, Oxford, and Cancer Research UK (programme grant C49297/A27294). JM was supported by the Cancer Research UK (programme grant C49297/A27294). PD was supported by the NIHR Biomedical Research Centre, Oxford. MOH is supported by the National Heart, Lung, and Blood Institute of the United States National Institutes of Health (grant R00 HL141678). ICCvDH and BCTvB received funding from Euregio Meuse-Rhine (grant Covid Data Platform (coDaP) interref EMR187). The funders played no role in study design, data collection, data analysis, data interpretation, or reporting.Peer reviewedPublisher PD

    Neuromatch Academy: a 3-week, online summer school in computational neuroscience

    Get PDF
    Neuromatch Academy (https://academy.neuromatch.io; (van Viegen et al., 2021)) was designed as an online summer school to cover the basics of computational neuroscience in three weeks. The materials cover dominant and emerging computational neuroscience tools, how they complement one another, and specifically focus on how they can help us to better understand how the brain functions. An original component of the materials is its focus on modeling choices, i.e. how do we choose the right approach, how do we build models, and how can we evaluate models to determine if they provide real (meaningful) insight. This meta-modeling component of the instructional materials asks what questions can be answered by different techniques, and how to apply them meaningfully to get insight about brain function

    Neuromatch Academy: a 3-week, online summer school in computational neuroscience

    Get PDF
    corecore