
Smith ScholarWorks Smith ScholarWorks

Biological Sciences: Faculty Publications Biological Sciences

Spring 2021

Teaching Computation in Neuroscience: Notes on the 2019 Teaching Computation in Neuroscience: Notes on the 2019

Society for Neuroscience Professional Development Workshop on Society for Neuroscience Professional Development Workshop on

Teaching Teaching

William Grisham
University of California, Los Angeles

Mathew Abrams
Karolinska Institute

Walt E. Babiec
University of California, Los Angeles

Adriene L. Fairhall
University of Washington

Robert E. Kass
Carnegie Mellon University

See next page for additional authors

Follow this and additional works at: https://scholarworks.smith.edu/bio_facpubs

 Part of the Biology Commons

Recommended Citation Recommended Citation
Grisham, William; Abrams, Mathew; Babiec, Walt E.; Fairhall, Adriene L.; Kass, Robert E.; Wallisch, Pascal;
and Olivo, Richard F., "Teaching Computation in Neuroscience: Notes on the 2019 Society for
Neuroscience Professional Development Workshop on Teaching" (2021). Biological Sciences: Faculty
Publications, Smith College, Northampton, MA.
https://scholarworks.smith.edu/bio_facpubs/233

This Article has been accepted for inclusion in Biological Sciences: Faculty Publications by an authorized
administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/bio_facpubs
https://scholarworks.smith.edu/bio
https://scholarworks.smith.edu/bio_facpubs?utm_source=scholarworks.smith.edu%2Fbio_facpubs%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/41?utm_source=scholarworks.smith.edu%2Fbio_facpubs%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/bio_facpubs/233?utm_source=scholarworks.smith.edu%2Fbio_facpubs%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu

Authors Authors
William Grisham, Mathew Abrams, Walt E. Babiec, Adriene L. Fairhall, Robert E. Kass, Pascal Wallisch, and
Richard F. Olivo

This article is available at Smith ScholarWorks: https://scholarworks.smith.edu/bio_facpubs/233

https://scholarworks.smith.edu/bio_facpubs/233

The Journal of Undergraduate Neuroscience Education (JUNE), Spring 2021, 19(2), A185-A119

JUNE is a publication of Faculty for Undergraduate Neuroscience (FUN) www.funjournal.org

ARTICLE
Teaching Computation in Neuroscience: Notes on the 2019 Society for
Neuroscience Professional Development Workshop on Teaching

William Grisham1, Mathew Abrams2, Walt E. Babiec3, Adrienne L. Fairhall4, Robert E. Kass5,
Pascal Wallisch6, and Richard Olivo7
1Department of Psychology, UCLA, Los Angeles, CA, 90095-1563; 2International Neuroinformatics Coordinating Facility,
Karolinska Institutet. Nobels väg 15A, Stockholm. Sweden SE-171 77; 3Neuroscience Interdepartmental Program /
Physiology, UCLA, Los Angeles, CA, 90095-1761; 4Department of Physiology and Biophysics and Computational
Neuroscience Center, University of Washington, Seattle WA 98195; 5 Department of Statistics & Data Science, Machine
Learning Department, and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213; 6Department of
Psychology, New York University, New York, NY 10003; 7Department of Biological Sciences, Smith College,
Northampton, MA 01063.

The 2019 Society for Neuroscience Professional
Development Workshop on Teaching reviewed current
tools, approaches, and examples for teaching computation
in neuroscience. Robert Kass described the statistical
foundations that students need to properly analyze data.
Pascal Wallisch compared MATLAB and Python as
programming languages for teaching students. Adrienne
Fairhall discussed computational methods, training
opportunities, and curricular considerations. Walt Babiec
provided a view from the trenches on practical aspects of

teaching computational neuroscience. Mathew Abrams
concluded the session with an overview of resources for
teaching and learning computational modeling in
neuroscience.

 Key words: Society for Neuroscience; teaching
workshop; professional development; computational
neuroscience; coding, programming, MATLAB, Python,
modeling

If the human brain were so simple
That we could understand it,
We would be so simple
That we couldn’t.
 - George Edgin Pugh, The Biological Origin of Human
Values, 1977

 The task of understanding brains is a central aim of
neuroscience. As educators, we need ways of
conceptualizing the brain so that we can explain it and its
function to students. Models can fit this need if they reflect
important aspects of reality. A plastic model of a human
brain reflects reality and can explain neuroanatomy, but it is
static. Real brains, by contrast, are complex, dynamic, and
interactive -- often in a nonlinear fashion across time. Thus,
if we are to capture this reality, we need effective models,
and the only models that could reasonably fulfill this role are
computational ones. In addition, stunning advances in
recording, molecular, and anatomical techniques provide us
with data sets of ever-increasing complexity, pushing the
need for tools and concepts to extract meaning from these
data. The BRAIN Initiative’s BRAIN 2025 report (Bargmann
et al., 2014) put theory, modeling and data analysis at the
core of expected future advances in neuroscience, and the
2019 BRAIN review (du Lac et al, 2019) underscored the
ongoing pressing need for training in these areas.
 Teaching computational neuroscience endows students
with valuable skills as they enter the workforce (Grisham et
al., 2016). Indeed, the National Science Foundation (NSF)
and American Association for the Advancement of Science

Vision and Change (AAAS, 2011) document urges
educators in biological science to augment students’
quantitative reasoning by using modeling and simulation to
describe living systems. Statistical methods of analyzing
data are best learned in pursuit of scientific questions, and
such experience and skills in data science have never been
in greater demand. At one time this curriculum seemed
beyond the reach of most undergraduates (Grisham, 2014),
but a reconsideration of the zeitgeist forces us to conclude
that now is the time to develop such courses. The
Professional Development Workshop on Teaching at the
2019 annual meeting of the Society for Neuroscience
gathered together experts to discuss options for teaching
computation in neuroscience, with the goal of helping faculty
plan or revise courses in this area, particularly for
undergraduates.

ROB KASS: STATISTICAL BACKGROUND
AND STATISTICAL MODELS IN
COMPUTATIONAL NEUROSCIENCE: WHAT
IS COMPUTATIONAL NEUROSCIENCE?
Computational neuroscience emerged from converging
ideas that would now be associated with computer science,
mathematics, neuroscience, psychology, and statistics. It
remains helpful for students, even within the briefest of
introductions, to appreciate the very constructive interplay
among multiple disciplines in attempting to understand the
brain. With support of an NIH Blueprint training grant, for
the past three years the initial pages from Kass et al. (2018)

Grisham et al. Teaching computation in neuroscience A186

have served as an introductory reading in many contexts,
including an undergraduate bootcamp in computational
neuroscience for students from across the country.
 There are two distinct ways that statistics enter
computational neuroscience: first, through stochastic
models of neural phenomena, and second, through data
analysis. Students should have a feeling for both of these
roles of statistics. It would be possible to design an
undergraduate curriculum on the basics of computational
neuroscience that brings in these two roles of statistics. An
introductory course in this curriculum could serve both
computational and non-computational students. For many
years, Robert Kass has taught such an introductory course
in computational neuroscience to graduate students from a
range of programs — from biology to engineering — at the
Center for the Neural Basis of Cognition (a joint effort of
Carnegie Mellon and the University of Pittsburgh). Two
projects are currently underway to provide educators with
new resources: a textbook on computational neuroscience,
and a collection of 10-minute videos on selected topics. It
will likely be several years until the textbook is available, but
the videos should be public by 2021 (and the collection is
designed to grow with contributions from instructors and
researchers around the world).
 The constraints of most undergraduate curricula,
however, are often limited by scope and faculty expertise,
and it isn't clear how many institutions will soon be able to
accommodate a semester-long course on computational
neuroscience for undergraduates. Furthermore, a designer
of such a course faces a choice: either accept some
superficiality and teach to diverse backgrounds, or require
multiple prerequisites in math and statistics as well as
programming comfort with high-level languages such as
Python, MATLAB, or R. Many neuroscience instructors
might like to incorporate some computational topics into a
general neuroscience course, but even at this level,
background lectures are essential, and material from Kass
et al. (2014) will be helpful because it is aimed at an
undergraduate neuroscience audience.
 Ten essential topics in computational neuroscience,
including four on background material, would be:

1. Random variables and important probability
distributions.
2. Random vectors, least-squares linear regression,
and the underlying linear algebra.
3. Bayes’ Theorem and the optimality of Bayes
classifiers; the Law of Large Numbers and the Central
Limit Theorem; and statistical estimation.
4. The exponential function solutions to a first-order
differential equation.
5. Random walk models of integrate-and-fire functions
of neurons; effects of noise: balanced excitation and
inhibition.
6. Electrical circuit model of a neuron. Passive synaptic
dynamics and phenomenological models of spiking and
integrate-and-fire dynamics.
7. The Hodgkin-Huxley model of action potential
generation.

8. Population vectors.
9. Information theory in human discrimination. A nice
reading is Miller (1956).
10. Cognition and optimality. An overview is given in
Chapter 1 of Anderson (2007).

PASCAL WALLISCH: TEACHING A
PROGRAMMING LANGUAGE: MATLAB OR
PYTHON?
Computational neuroscience analyses of data can be
broken down into three levels At the top, data sets usually
are multivariate, so the strategic goal is often to reduce
dimensions, which is the task of an algorithm. Algorithms,
the second level, are tactics to achieve a strategic goal, and
there are many algorithms to choose from. After choosing
one, there is an implementation stage where coding takes
place, the third level. Students usually focus on the
implementation level, which is one level down from the
algorithmic level. Nonetheless, as educators, we should
urge students to focus on the algorithmic level and ask
questions such as, “Does the algorithm fit the problem?” and
“Do the data conform to assumptions of the algorithmic
tactic?” Answers to these questions should determine the
choice of the algorithmic tactic—and hence the
programming package.
 Programs are lifeboats to keep students from drowning
in the tsunami of data. The two lifeboats currently receiving
attention are MATLAB & Python. MATLAB stands for
"matrix laboratory" and was actually created to teach
FORTRAN. Python’s name comes from Monty Python, not
from the snake. Both are high level programming
languages.
 Although social media discussions about the two
languages are sometimes quite vehement, there really is no
need to be dogmatic in choosing between them. Both are
tools that allow one to achieve some goal from an initial
state. A tool removes a problem standing in the way of
achieving a goal. So, what’s the best tool? That depends
where you start, what you want to do, and what the problem
is. The tool should fit the problem, and it is okay to use more
than one tool.
 There are various considerations for choosing between
MATLAB or Python. One is processing speed, which isn’t
very different between the two because both are fairly fast.
Another is cognitive ease, which is a measure of the difficulty
of writing and understanding code. The two are fairly
comparable — both MATLAB and Python are high level
programs with thousands of functions available. Another
consideration is backward compatibility — MathWorks
makes sure that backward compatibility exists for prior code,
and although Python is more leading edge, its developers
don’t seem terribly concerned with backward compatibility.
One of the biggest conceptual differences between the two
is indexing values: Python starts at 0, MATLAB starts at 1.
Also, the data type is a matrix in MATLAB, whereas Python
is general purpose. Which you choose to use will depend
on the task you want to accomplish.
 Style is also different between the two packages; blank
space is meaningful in Python but not in MATLAB. Despite

The Journal of Undergraduate Neuroscience Education (JUNE), Spring 2021, 19(2):A185-A191 A187

arguments on social media sites, Python is not really more
elegant than MATLAB. MATLAB has a more straightforward
syntax, and Python is often more verbose. Both packages
are continually evolving to improve their capabilities and
ease of use. Python is now easier to install than it was
before Anaconda was developed. New MATLAB
capabilities of string handling datatypes are now expanded.
Webscraping is easier in Python, but sound-handling is
easier in MATLAB. Again, the choice depends on the
problem.
 Although Python is currently the most popular language
among programmers, many more publications have used
MATLAB rather than Python for data analyses; Python and
its variants make up less than 1% of publications.
 The most compelling issue in making a choice is where
your students are in their programming abilities.
Inexperienced students in NYU classes do better with
MATLAB, and MATLAB provides excellent support with
actual people available to help 24/7. With Python, there is
no one to call, and Stack Overflow is the help desk. The
problem is that Stack Overflow is a wiki that may or may not
have the right information.
 Finally, there are cost considerations—MATLAB is easier
to learn, but requires a license whereas Python is free. Dr.
Wallisch’s book with Eric Nylan (2017), Neural Data
Science: A Primer with MATLAB and Python, teaches both
in Rosetta Stone fashion by providing programs in both
languages along with English explanations.
 So to answer the question, ”Which one should an
educator pick?” Whatever works for you and your students.

ADRIENNE FAIRHALL: TEACHING
COMPUTATIONAL NEUROSCIENCE
Computational neuroscience as a field is the union of
multiple approaches to understanding neural function:
theory, modeling, and data analysis (Figure 1). Theory is
the big picture: the algorithm or framework or principle or
solution space that underlies a specific dynamic. Examples
include reinforcement learning (algorithm), Hopfield
networks (framework), efficient coding (principle) and
attractor dynamics (solution space). Modeling describes the
attempt to write down and solve equations that reproduce
aspects of experimental data, however coarse-grained. A
classic example is the Hodgkin-Huxley system of equations
for action potential generation in an axon, or at the opposite
extreme, the Blue Brain project, which aims to simulate at
biophysical levels of detail the activity of an entire cortical
column (Einevoll et al., 2019). The goal of data analysis is
to characterize a system via observations (Aljadeff et al.,
2016; Kass et al., 2014), ideally revealing properties or
dynamics that can be mapped onto models and, ultimately,
test theories.
 Teaching computational neuroscience is, therefore,
challenging and multifaceted. Full understanding of a neural
system should involve all three components (Fairhall, 2014),
so students should gain some facility with all of these
aspects. Each aspect involves distinct disciplines of
mathematics, engineering, computer science, physics, and
statistics.

Challenges
Students have different needs or expectations for their
training. All emerging systems neuroscientists should gain
sufficient mathematical background and coding skill so they
can manipulate data. While some will want to attain
proficiency in order to understand and use ideas and
methods in experimental research, others want to specialize
in theory. However, to be able to develop novel conceptual
theories or devise new data analysis methods, it is certainly
helpful to have a deep grasp of at least one quantitative field
— applied mathematics, statistics, physics, or computer
science. Thus, designing a training program in
computational neuroscience at both undergraduate and
graduate levels needs to handle diverse preparation and
expectations. Further, a program needs to provide a
breadth of understanding and a grounding in basic
neuroscience with the opportunity for depth of training in a
specific field. Given that students enter with a wide range of
backgrounds, students and teachers can help to bridge
some of the inevitable gaps.

Core Coursework
An ideal minimal coursework sequence will likely need to
bridge undergraduate and graduate classes. Given the
increasing sophistication of analysis required for large data
sets, undergraduate students thinking of entering systems
neuroscience need to maintain a reasonably high level of
core mathematics, whether they plan to become theorists or
experimentalists. Providing early information and
encouragement to new undergraduates to maintain
mathematical training can have high impact. For example,
early exposure in the freshman or sophomore year to
neuroscience research talks can highlight the deep
intersections of neuroscience and mathematical topics, and
encourage students to maintain a high level of quantitative
undergraduate coursework.
 A sequence such as in Table 1 is recommended.
Learning to code is obviously vital. This learning could be
done in a computer science class but can also be learned

Figure 1. Schema of conceptual areas within computational
neuroscience and their roles in understanding biological
computation. (Adapted from Fairhall, 2014).

Grisham et al. Teaching computation in neuroscience A188

Table 1. Topics for course work.

alongside mathematics or data analysis methods or in the
context of an “integrative” computational neuroscience
class.

Bridging classes
Graduate school is not too late to learn computational
methods. Many institutions are now offering graduate
classes in mathematical/quantitative methods for
neuroscience. The University of Washington teaches a
class called “Quantitative Methods in Neuroscience,”
offered both for computational neuroscience
undergraduates and as a core class for all neuroscience
graduate students. The course consists of five modules:
linear algebra, differential equations, Fourier transforms,
stochastic processes, and principal component analysis.
Each topic is studied for two weeks: one week of lectures
and one week of interactive exercises buttressed by a
classic neuroscience paper that students present that
employs the method in the exercises. Bringing together
relatively mathematically sophisticated undergraduates and
potentially mathematically naïve graduate students allows
active two-way exchange in class exercises and
presentations. A key tool for this class is a set of MATLAB
tutorials, which intersperse liberally commented code with
pedagogical text and quiz prompts. In these tutorials
students:

 Walk through basic commands with annotations
 Perform computations and parameter variations
 Describe outputs
 Interpret results
 Are prompted to write new code
 Ponder/answer embedded open-ended questions
 Can repurpose code in a novel way in a project.

The outcome for this class is that all students gain a working
ability to use MATLAB, and they gain exposure to
mathematical ideas in sufficient depth to inspire them to do
additional classes or reading where desired. It helps
students new to biology to see how mathematics can play
an important role in framing and solving biology questions.
The compressed format also allows pointing out the
relationships between the topics, which are very often
obscured when these subjects are learned in isolation — in
particular, the key role of linear systems.

Integrative Course Design
In view of the multilevel interactions outlined in Figure 1, it
would be ideal when possible to incorporate all three into
teaching. For students with diverse preparation, it can be
especially important to motivate methods and analysis with
a framing of the question being addressed. One can begin
with the question posed by the biological system; discuss
and explain the big-picture framework and the mathematical
underpinnings; consider concrete models; and teach
methods to validate or explore models based on data.
Incorporating a project for final assessment is an opportunity
to consolidate learning of the process of interdisciplinary
science.

Be Hands-On
In any computational neuroscience class, students should
be coding up models and playing with data. A key teaching
decision is: Python or MATLAB? Both have pros and cons,
as described in detail by Dr. Wallisch (see above). MATLAB
has a lower barrier for entry for newcomers to coding and
can be preferable for undergraduates or introductory
computational graduate classes that include students who
will follow an experimental track. For students specializing
in computational fields, Python is a good long-term
investment.

Bridging Gaps
Graduate students can pick up missing math as electives or
by auditing; postdocs can also audit classes. Online classes
between undergraduate and graduate school can be a great
way to supplement missing math classes from the “core” list;
there are many high-quality options including Khan
Academy for basics like linear algebra.

Summer Schools
Summer schools are an excellent accelerated option to gain
rapid experience in computational neuroscience. A large
number are offered around the US and internationally,
helpfully collected by Tom Burns at
https://tfburns.github.io/compneuro-summer-schools/ and
https://docs.google.com/spreadsheets/d/1b05MPR7bkxnw
KjzY-
6KHd_aDaV_68qwMhuFVu5IGG9g/edit#gid=276255682.
These schools are often suited for more advanced students
(senior graduate students and postdocs) but many
specifically aim to cater to a wide range of backgrounds and
to give a rapid leg up to students who want an intensive
learning experience. There are of course many other

Course work in a computational neuroscience sequence

Core background
• Linear algebra
• Differential equations
• Probability and statistics
Theory and modeling
• Dynamical systems
• Nonlinear dynamics
• Statistical physics
• Control theory

Data analysis
• Statistics
• Signal processing
• Machine learning

Integrative
• Computational neuroscience
• Neural network theory
• Reinforcement learning
• Applications (motor control, sensory systems)
• Journal club

The Journal of Undergraduate Neuroscience Education (JUNE), Spring 2021, 19(2):A185-A191 A189

benefits to summer schools:

 Students form relationships with international peers

which can continue throughout their careers
 Many courses incorporate a project that is an

excellent learning opportunity and a chance to work
directly with a professor or teaching assistants

 There are opportunities to interact extensively with
well-known professors nationally and
internationally to build career visibility.

Two highly recommended courses are the Methods in
Computational Neuroscience course at the Marine
Biological Laboratory and the Summer Workshop for the
Dynamic Brain, co-run by the Allen Institute for Brain
Science and the University of Washington. Both of these
courses mix lectures on systems in neuroscience with
mathematics and statistical methods and show how models
are developed in application to the systems under
discussion. The recent success of Neuromatch Academy
(Juavinett, 2020), which offered in depth training to almost
2000 students worldwide online during the 2020 pandemic,
is surely going to remain an important model for the future.

Online Classes
Particularly in the wake of COVID-19, online classes provide
an important component of computational neuroscience
teaching. An online course on the Coursera platform,
Computational Neuroscience, has served many students as
an introduction to the field
(https://www.coursera.org/learn/computational-
neuroscience). Coursera also facilitates interaction
between students.

WALT BABIEC: GEOMETRY OF THE
NERVOUS SYSTEM: A COURSE IN
DYNAMICAL SYSTEMS ANALYSIS &
MODELING OF NEURAL FUNCTION
Living things change with time. But how do we understand
and make sense of that change? Are there no similarities in
how organisms change with time? Is there a vocabulary that
we can use to describe and differentiate that change? There
is, and a UCLA course – Dynamical Systems Modeling of
Physiological Systems – provides students in Neuroscience,
Physiological Science, and Life Sciences with a rigorous,
quantitative framework for describing dynamic behavior in
living systems.
 The course takes a dynamical systems approach to
describing or modeling living systems. The state of any
system, whether it be a gene network, a cell, a whole
organism, or an ecosystem, can be described by a set of
time-varying state variables such as protein concentration,
animal population, or genotype prevalence. Differential
equations or iterated maps are used to define how those
state variables are changing at any instant. They provide
the road map to understanding how a system changes with
time, whether certain changes with time are even possible,
and what might happen to those forms of change if

properties of the system change.
 Before describing how to teach the dynamical systems
approach to students whose first love is not mathematics,
it’s important to understand the big ideas, the purpose for
teaching them this material in the first place. First, it is
important to modernize students’ view of the meaning of
homeostasis. Rather than Cannon’s (1929) more rigid
notion of keeping things standing still at a certain
physiological set point, the course helps students recognize
and understand that most homeostatic processes, such as
regulation of Purkinje neuron firing rate, hypothalamic
control of body temperature, or the sleep-wake and
circadian cycles, are controlled oscillations rather than static
equilibria. While this may sound a little bit undefined in
language, our dynamical systems viewpoint allows us to
generate precise definitions that can be tested. If the
change in temperature, that is, T’ = 0, then we have true
homeostasis. If, however, T’ ≠ 0, but the trajectory of T
repeats with time, we have a stable limit-cycle oscillation.
The latter is what we see throughout physiological systems
and nature as a whole.
 This brings us to the next major point. Real physiological
systems are nonlinear, rely upon feedback, and operate with
time delays. While we often eschew nonlinearities in
engineered systems, they are essential in physiological
systems. Simple but incredibly important decisions (for
example, whether a neuron fires an action potential or
remains quiescent) are nonlinear by their very nature and
cannot be linearized without losing that behavior.
Furthermore, oscillatory behavior requires negative
feedback and time delays in order to operate properly.
Again, a dynamical systems approach allows observing and
analyzing how the strength of the feedback and the length
of the time delays affect the behavior of the physiological
system being studied.
 Finally, a dynamical systems viewpoint allows us to
understand and observe how complex physiological
behavior emerges from self-organized activity. For
example, every neuroscience student is taught that a neuron
has a firing threshold. If the membrane potential stays below
threshold, the neuron doesn’t fire. If the membrane potential
exceeds threshold, the neuron fires an action potential. But
where is threshold stored? What protein or nucleotide
sequence encodes threshold? After studying the Hodgkin-
Huxley equations and Fitzhugh’s simplified formulation of
them, the students understand that threshold is an emergent
property of the nonlinear interaction of the passive
membrane properties of the neuron with voltage-activated
Na+ and K+ channels. Crossing threshold represents a
Hopf bifurcation from equilibrium behavior at rest, to
oscillatory behavior during action potential firing. Action
potentials, therefore, are an emergent property of solubilized
ions, lipids, and proteins whose dynamic interactions can be
described effectively and efficiently with a system of four
ordinary differential equations, the Hodgkin-Huxley
equations.
 Most of the students are not biomathematics or
quantitative biology majors. Also, they are not experienced
modelers. So, we take an approach where they learn the

Grisham et al. Teaching computation in neuroscience A190

basics of how to analyze and model dynamical systems
without lengthy derivations or proofs. In fact, the students
never even solve a system of differential equations
analytically, because, as they learn, most non-linear
differential equations lack analytic solutions. The approach
is laid out in a wonderful textbook by Garfinkel et al.
Modeling Life (2017 — video lectures are available for free
at https://modelinginbiology.github.io/videos/). This book
not only makes dynamical systems, including chaotic ones,
easily understandable for Life Sciences students, but also
the examples in the book are centered around physiological,
ecological, and epidemiological systems rather than the
usual assortment of physical systems (e.g., mass-spring,
pendulum, and planetary) that form the basis of most books
on the topic of dynamical systems.
 The UCLA course takes place during a single ten-week
quarter. In class, the course lays out the underpinnings of
the dynamical systems approach. Students are given ample
opportunities to work with this approach in weekly simulation
laboratories that are overseen by teaching assistants who
are highly skilled in the analysis and interpretation of
dynamical systems. Rather than forcing students into
learning a lot of coding skills while also learning about
dynamical systems, the class employs an inexpensive and
simple to use but powerful modeling program called
Berkeley Madonna (2021) that is available for both Windows
and MacOS devices. Students are assessed using a variety
of methods, including 1) in-class exams to assess their
understanding of dynamical systems thinking, 2) simulation
laboratory exercises to assess their development as
implementers, 3) interpretation of models, 4) and finally a
modeling project where students develop models in areas of
their own interest that put together all of what they learn.
 When the course is complete, the students are able to
analyze the behavior of systems of ordinary nonlinear
differential equations for equilibria and, more generally,
attractors, as well as qualitative changes in the dynamic
behavior of these systems with changes in parameter values
(bifurcations). They are able to develop differential equation
models of biological systems, including the identification of
relevant state variables and their feedforward and feedback
interactions. In addition, they know how to use computer
simulations to calculate and visualize the behavior of
particular solutions to differential equation models of
biological systems. Most importantly, they become
proficient enough in these skills to develop and simulate de
novo differential equations models from basic system
descriptions.
 Dynamical systems are the language of nature.
Understanding how to describe natural systems in terms of
dynamical systems and then analyze the behavior that
emerges from them empowers students to go from
describing what may be happening based on linear thinking
about first principles, to what is actually happening and what
can (and, just as importantly, cannot) emerge from the
behavior of these systems. Solving 21st-century problems
in biology requires contemporary quantitative thinking. Only
then can we truly appreciate the importance and beauty of
the geometry of nature.

MATHEW ABRAMS: TRAININGSPACE:
RESOURCES FOR COMPUTATIONAL
NEUROSCIENCE & NEUROEDUCATION
WITHOUT BORDERS
The International Neuroinformatics Coordinating Facility
(INCF) now includes TrainingSpace
(https://training.incf.org/), an online hub to make
neuroscience educational materials more accessible to the
global neuroscience community. TrainingSpace was
developed in collaboration with INCF, HBP, SfN, FENS,
IBRO, IEEE, BD2K, and the iNeuro Initiative. As a hub,
TrainingSpace provides users with access to:

● Multimedia educational content from courses,

conference lectures, and laboratory exercises from
some of the world’s leading neuroscience institutes
and societies.

● Four study tracks (Neuroinformatics,
Computational Neuroscience, Neuroscience, and
Brain Medicine) to facilitate self-guided study.

● Tutorials/demonstrations of resources (tools,
software, and services) available for neuroscience
research.

● Neurostars.org, a Q&A forum.
● KnowledgeSpace, a data discoverability

portal/encyclopedia for neuroscience that provides
users with access to over 1,600,000 files of publicly
available data and models as well as links to
literature references and scientific abstracts.

 In addition to the subject themes of the four study tracks
(neuroinformatics, computational neuroscience, brain
medicine, and neuroscience), TrainingSpace also includes
lectures, courses, and tutorials in computer science, data
science, ethics, career development, and open science. All
content objects in TrainingSpace include a general
description, learning objectives/topics covered, difficulty
level, and links to required software/tools and prerequisites
courses/lectures. Many lectures also include downloadable
lecture notes and slides and links to Jupyter notebooks,
code repositories, and sample datasets. TrainingSpace
also provides access to tutorials on open science resources
that instructors could incorporate into their courses
(instructors are free to include all multimedia content found
in TrainingSpace into their courses).
 To facilitate self-guided learning in TrainingSpace, INCF
is pursuing its integration with Neurostars.org, a question
and answer forum for neuroscience researchers,
infrastructure providers and software developers.
Neurostars provides access to experts from around the
world for students and teachers. Sample datasets and
models are available in KnowledgeSpace
(https://knowledge-space.org/), which was developed jointly
by INCF, the Human Brain Project, and the Neuroscience
Information Framework (NIF). KnowledgeSpace is a
repository of global neuroscience web resources, including
experimental, clinical, and translational neuroscience
databases, knowledge bases, atlases, and genetic/genomic

The Journal of Undergraduate Neuroscience Education (JUNE), Spring 2021, 19(2):A185-A191 A191

resources, all of which have been integrated into
TrainingSpace. KnowledgeSpace also serves as an
encyclopedia for neuroscience that combines general
descriptions found in Wikipedia with more detailed content
from InterLex, a dynamic lexicon of neuroscience concepts
supported by NIF. KnowledgeSpace then integrates the
content from those two sources with the latest neuroscience
citations found in PubMed and data found in some of the
world’s leading neuroscience repositories.

CONCLUSION
Speakers in this workshop offered a variety of viewpoints.
One that was widely endorsed was providing hands-on
instruction, including the use of resources that allow
learning with actual data sets, as described by Dr. Abrams.
There were differences in opinion about how steeped in
mathematical training students need to be; both Dr. Fairhall
and Dr. Kass suggested the need for a fairly rigorous
background, while Dr. Babiec described a course in which
differential equations are not necessary. As for whether
Python or MATLAB is better for implementing algorithms,
both approaches are valuable depending on your students'
background and which pedagogical objectives you want to
achieve.
 The future will no doubt provide even more complex
computational models that strive to integrate levels from the
molecular to the behavioral. The organizers believe that this
workshop will help faculty to teach computational aspects of
neuroscience at both the undergraduate and graduate
levels.
 Videos of the workshop can be viewed at the Society for
Neuroscience's Neuronline website:
https://neuronline.sfn.org/career-paths/teaching-
computation-in-neuroscience. Viewing is unlimited for SfN
members, and currently includes up to five free articles for
others.

REFERENCES
Aljadeff Y, Lansdell B, Fairhall A, Kleinfeld D (2016) spike train

analysis, deconstructed. Neuron 91(2):221–259.
American Association for the Advancement of Science (2011)

Vision and change in undergraduate biology education: a call to
action. Washington, DC: AAAS. Available at
https://visionandchange.org/finalreport/

Anderson JR (2007) how can the mind occur in the physical
universe? Oxford, UK: Oxford Press. Available at
https://doi.org/10.1093/acprof:oso/9780195324259.001.0001

Bargmann C et al. (2014) BRAIN 2025: Brain Research through
Advancing Innovative Neurotechnologies (BRAIN) working
group report to the advisory committee to the director, NIH.
Bethesda, MD: National Institutes of Health. Available at
https://braininitiative.nih.gov/strategic-planning/brain-2025-

report.
Berkeley Madonna, Inc. (2021) Berkeley Madonna. Berkely, CA:

University of California, Berkeley. Available at https://berkeley-
madonna.myshopify.com/.

Cannon WB (1929) Organization for physiological homeostasis.
Physiol Rev 9:399–431.

Du Lac, C et al. (2019) The BRAIN Initiative 2.0: From cells to
circuits, towards cures. Report of the NIH Director BRAIN
Initiative Working Group 2.0. Bethesda, MD: National Institutes
of Health. Available at https://braininitiative.nih.gov/strategic-
planning/acd-working-groups/brain-initiative-20-cells-circuits-
toward-cures.

Einevoll GT et al. (2019) The Scientific Case for Brain Simulations.
Neuron. 102(4):735-744. Doi:10.1016/J.Neuron.2019.03.027.

Fairhall A (2014) The receptive field is dead. long live the receptive
field? Curr Opin Neurobiol: 25:Ix-Xii. Doi:
10.1016/J.Conb.2014.02.001.

Garfinkel A, Shevtsov J, Guo Y (2017) Modeling life: the
mathematics of biological systems. New York, NY: Springer.

Grisham W (2014) Book Review: MATLAB For Neuroscientists: an
introduction to scientific computing in MATLAB (Second Edition)
J Undergrad Neurosci Educ 13(1) R3-R4.

Grisham W, Lom B, Lanyon L, Ramos RL (2016) Proposed training
to meet challenges of large-scale data in neuroscience. Front
Neuroinform 10:28. Doi: 10.3389/Fninf.2016.00028.

Juavinett A (2020) The Self-Organized Movement to Create an
Inclusive Computational Neuroscience School. Simons
Foundation Blog, September 17, Available at
https://www.simonsfoundation.org/2020/09/17/the-self-
organized-movement-to-create-an-inclusive-computational-
neuroscience-school/.

Kass RE, Eden U, Brown E (2014) Analysis of neural data. New
York, NY: Springer.

Kass RE et al. (2016) Ten simple rules for effective statistical
practice. PLOS Comput Biol. Available at
doi.org/10.1371/journal.pcbi.1004961.

Kass RE et al (2018) Computational neuroscience: mathematical
and statistical perspectives. Annu Rev Stat Appl 5:183–214

Miller G (1956) The magical number seven, plus or minus two:
some limits on our capacity for processing information.
Psychological Review 101(2) 343-352.

Nylen, EL, Wallisch, P (2017) Neural data science: a primer with
MATLAB and Python, Boston, MA: Academic Press.

Pugh GE (1977) The biological origin of human values. New York,
NY: Basic Books.

Wallach P, Lusignan ME, Benayoun MD, Baker TI, Dickey AS,
Hatsopoulos NG (2014) MATLAB for neuroscientists: an
introduction to scientific computing in MATLAB. Boston, MA:
Academic Press.

Received November 8, 2020; accepted January 20, 2021.

Address correspondence to: Dr. William Grisham, Dept. of Psychology,
UCLA, PO Box 95-1563, Los Angeles, CA 90095-1563. Email:
wgrisham@g.ucla.edu

Copyright © 2021 Faculty for Undergraduate Neuroscience

www.funjournal.org

	Teaching Computation in Neuroscience: Notes on the 2019 Society for Neuroscience Professional Development Workshop on Teaching
	Recommended Citation
	Authors

	Microsoft Word - june-19-185

