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ARTICLE 
Teaching Computation in Neuroscience: Notes on the 2019 Society for 
Neuroscience Professional Development Workshop on Teaching 
 
William Grisham1, Mathew Abrams2, Walt E. Babiec3, Adrienne L. Fairhall4, Robert E. Kass5, 
Pascal Wallisch6, and Richard Olivo7 
1Department of Psychology, UCLA, Los Angeles, CA, 90095-1563; 2International Neuroinformatics Coordinating Facility, 
Karolinska Institutet. Nobels väg 15A, Stockholm. Sweden SE-171 77; 3Neuroscience Interdepartmental Program / 
Physiology, UCLA, Los Angeles, CA, 90095-1761; 4Department of Physiology and Biophysics and Computational 
Neuroscience Center, University of Washington, Seattle WA 98195; 5 Department of Statistics & Data Science, Machine 
Learning Department, and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213; 6Department of 
Psychology, New York University, New York, NY 10003; 7Department of Biological Sciences, Smith College, 
Northampton, MA 01063. 
 
The 2019 Society for Neuroscience Professional 
Development Workshop on Teaching reviewed current 
tools, approaches, and examples for teaching computation 
in neuroscience.  Robert Kass described the statistical 
foundations that students need to properly analyze data.  
Pascal Wallisch compared MATLAB and Python as 
programming languages for teaching students.  Adrienne 
Fairhall discussed computational methods, training 
opportunities, and curricular considerations.  Walt Babiec 
provided a view from the trenches on practical aspects of  

teaching computational neuroscience.  Mathew Abrams 
concluded the session with an overview of resources for 
teaching and learning computational modeling in 
neuroscience. 
      
 
     Key words: Society for Neuroscience;  teaching 
workshop; professional development; computational 
neuroscience; coding, programming, MATLAB, Python, 
modeling 
 

 
 

If the human brain were so simple 
That we could understand it, 
We would be so simple 
That we couldn’t.   
 - George Edgin Pugh, The Biological Origin of Human 
Values, 1977  

 
     The task of understanding brains is a central aim of 
neuroscience.  As educators, we need ways of 
conceptualizing the brain so that we can explain it and its 
function to students.  Models can fit this need if they reflect 
important aspects of reality.  A plastic model of a human 
brain reflects reality and can explain neuroanatomy, but it is 
static.  Real brains, by contrast, are complex, dynamic, and 
interactive -- often in a nonlinear fashion across time.  Thus, 
if we are to capture this reality, we need effective models, 
and the only models that could reasonably fulfill this role are 
computational ones.  In addition, stunning advances in 
recording, molecular, and anatomical techniques provide us 
with data sets of ever-increasing complexity, pushing the 
need for tools and concepts to extract meaning from these 
data.  The BRAIN Initiative’s BRAIN 2025 report (Bargmann 
et al., 2014) put theory, modeling and data analysis at the 
core of expected future advances in neuroscience, and the 
2019 BRAIN review (du Lac et al, 2019) underscored the 
ongoing pressing need for training in these areas. 
     Teaching computational neuroscience endows students 
with valuable skills as they enter the workforce (Grisham et 
al., 2016).  Indeed, the National Science Foundation (NSF) 
and American Association for the Advancement of Science 

Vision and Change (AAAS, 2011) document urges 
educators in biological science to augment students’ 
quantitative reasoning by using modeling and simulation to 
describe living systems.  Statistical methods of analyzing 
data are best learned in pursuit of scientific questions, and 
such experience and skills in data science have never been 
in greater demand.  At one time this curriculum seemed 
beyond the reach of most undergraduates (Grisham, 2014), 
but a reconsideration of the zeitgeist forces us to conclude 
that now is the time to develop such courses.  The 
Professional Development Workshop on Teaching at the 
2019 annual meeting of the Society for Neuroscience 
gathered together experts to discuss options for teaching 
computation in neuroscience, with the goal of helping faculty 
plan or revise courses in this area, particularly for 
undergraduates.   
 
ROB KASS: STATISTICAL BACKGROUND 
AND STATISTICAL MODELS IN 
COMPUTATIONAL NEUROSCIENCE: WHAT 
IS COMPUTATIONAL NEUROSCIENCE?  
Computational neuroscience emerged from converging 
ideas that would now be associated with computer science, 
mathematics, neuroscience, psychology, and statistics.  It 
remains helpful for students, even within the briefest of 
introductions, to appreciate the very constructive interplay 
among multiple disciplines in attempting to understand the 
brain.  With support of an NIH Blueprint training grant, for 
the past three years the initial pages from Kass et al. (2018) 
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have served as an introductory reading in many contexts, 
including an undergraduate bootcamp in computational 
neuroscience for students from across the country.  
     There are two distinct ways that statistics enter 
computational neuroscience: first, through stochastic 
models of neural phenomena, and second, through data 
analysis.  Students should have a feeling for both of these 
roles of statistics.  It would be possible to design an 
undergraduate curriculum on the basics of computational 
neuroscience that brings in these two roles of statistics.  An 
introductory course in this curriculum could serve both 
computational and non-computational students.  For many 
years, Robert Kass has taught such an introductory course 
in computational neuroscience to graduate students from a 
range of programs — from biology to engineering — at the 
Center for the Neural Basis of Cognition (a joint effort of 
Carnegie Mellon and the University of Pittsburgh).  Two 
projects are currently underway to provide educators with 
new resources: a textbook on computational neuroscience, 
and a collection of 10-minute videos on selected topics.  It 
will likely be several years until the textbook is available, but 
the videos should be public by 2021 (and the collection is 
designed to grow with contributions from instructors and 
researchers around the world). 
     The constraints of most undergraduate curricula, 
however, are often limited by scope and faculty expertise, 
and it isn't clear how many institutions will soon be able to 
accommodate a semester-long course on computational 
neuroscience for undergraduates.  Furthermore, a designer 
of such a course faces a choice: either accept some 
superficiality and teach to diverse backgrounds, or require 
multiple prerequisites in math and statistics as well as 
programming comfort with high-level languages such as 
Python, MATLAB, or R.  Many neuroscience instructors 
might like to incorporate some computational topics into a 
general neuroscience course, but even at this level,  
background lectures are essential, and material from Kass 
et al. (2014) will be helpful because it is aimed at an 
undergraduate neuroscience audience. 
     Ten essential topics in computational neuroscience, 
including four on background material, would be: 

 
1. Random variables and important probability 
distributions. 
2. Random vectors, least-squares linear regression, 
and the underlying linear algebra. 
3. Bayes’ Theorem and the optimality of Bayes 
classifiers; the Law of Large Numbers and the Central 
Limit Theorem; and statistical estimation. 
4. The exponential function solutions to a first-order 
differential equation. 
5. Random walk models of integrate-and-fire functions 
of neurons; effects of noise: balanced excitation and 
inhibition. 
6. Electrical circuit model of a neuron.  Passive synaptic 
dynamics and phenomenological models of spiking and 
integrate-and-fire dynamics. 
7. The Hodgkin-Huxley model of action potential 
generation. 

8. Population vectors. 
9. Information theory in human discrimination.  A nice 
reading is Miller (1956).  
10. Cognition and optimality.  An overview is given in 
Chapter 1 of Anderson (2007). 

 
PASCAL WALLISCH: TEACHING A 
PROGRAMMING LANGUAGE: MATLAB OR 
PYTHON? 
Computational neuroscience analyses of data can be 
broken down into three levels At the top, data sets usually 
are multivariate, so the strategic goal is often to reduce 
dimensions, which is the task of an algorithm.  Algorithms, 
the second level, are tactics to achieve a strategic goal, and 
there are many algorithms to choose from.  After choosing 
one, there is an implementation stage where coding takes 
place, the third level.  Students usually focus on the 
implementation level, which is one level down from the 
algorithmic level.  Nonetheless, as educators, we should 
urge students to focus on the algorithmic level and ask 
questions such as, “Does the algorithm fit the problem?” and 
“Do the data conform to assumptions of the algorithmic 
tactic?” Answers to these questions should determine the 
choice of the algorithmic tactic—and hence the 
programming package.   
     Programs are lifeboats to keep students from drowning 
in the tsunami of data.  The two lifeboats currently receiving 
attention are MATLAB & Python.  MATLAB stands for 
"matrix laboratory" and was actually created to teach 
FORTRAN.  Python’s name comes from Monty Python, not 
from the snake.  Both are high level programming 
languages.   
     Although social media discussions about the two 
languages are sometimes quite vehement, there really is no 
need to be dogmatic in choosing between them.  Both are 
tools that allow one to achieve some goal from an initial 
state.  A tool removes a problem standing in the way of 
achieving a goal.  So, what’s the best tool? That depends 
where you start, what you want to do, and what the problem 
is.  The tool should fit the problem, and it is okay to use more 
than one tool.   
     There are various considerations for choosing between 
MATLAB or Python.  One is processing speed, which isn’t 
very different between the two because both are fairly fast.  
Another is cognitive ease, which is a measure of the difficulty 
of writing and understanding code.  The two are fairly 
comparable — both MATLAB and Python are high level 
programs with thousands of functions available.  Another 
consideration is backward compatibility — MathWorks 
makes sure that backward compatibility exists for prior code, 
and although Python is more leading edge, its developers 
don’t seem terribly concerned with backward compatibility.  
One of the biggest conceptual differences between the two 
is indexing values: Python starts at 0, MATLAB starts at 1.  
Also, the data type is a matrix in MATLAB, whereas Python 
is general purpose.  Which you choose to use will depend 
on the task you want to accomplish.   
     Style is also different between the two packages; blank 
space is meaningful in Python but not in MATLAB.  Despite 
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arguments on social media sites, Python is not really more 
elegant than MATLAB.  MATLAB has a more straightforward 
syntax, and Python is often more verbose.  Both packages 
are continually evolving to improve their capabilities and 
ease of use.  Python is now easier to install than it was 
before Anaconda was developed.  New MATLAB 
capabilities of string handling datatypes are now expanded.  
Webscraping is easier in Python, but sound-handling is 
easier in MATLAB.  Again, the choice depends on the 
problem.   
     Although Python is currently the most popular language 
among programmers, many more publications have used 
MATLAB rather than Python for data analyses; Python and 
its variants make up less than 1% of publications.     
     The most compelling issue in making a choice is where 
your students are in their programming abilities.  
Inexperienced students in NYU classes do better with 
MATLAB, and MATLAB provides excellent support with 
actual people available to help 24/7.  With Python, there is 
no one to call, and Stack Overflow is the help desk.  The 
problem is that Stack Overflow is a wiki that may or may not 
have the right information.   
     Finally, there are cost considerations—MATLAB is easier 
to learn, but requires a license whereas Python is free.  Dr. 
Wallisch’s book with Eric Nylan (2017), Neural Data 
Science: A Primer with MATLAB and Python, teaches both 
in Rosetta Stone fashion by providing programs in both 
languages along with English explanations.   
     So to answer the question, ”Which one should an 
educator pick?” Whatever works for you and your students. 
 
ADRIENNE FAIRHALL: TEACHING 
COMPUTATIONAL NEUROSCIENCE  
Computational neuroscience as a field is the union of 
multiple approaches to understanding neural function: 
theory, modeling, and data analysis (Figure 1).  Theory is 
the big picture: the algorithm or framework or principle or 
solution space that underlies a specific dynamic.  Examples 
include reinforcement learning (algorithm), Hopfield 
networks (framework), efficient coding (principle) and 
attractor dynamics (solution space).  Modeling describes the 
attempt to write down and solve equations that reproduce 
aspects of experimental data, however coarse-grained.  A 
classic example is the Hodgkin-Huxley system of equations 
for action potential generation in an axon, or at the opposite 
extreme, the Blue Brain project, which aims to simulate at 
biophysical levels of detail the activity of an entire cortical 
column (Einevoll et al., 2019).  The goal of data analysis is 
to characterize a system via observations (Aljadeff et al., 
2016; Kass et al., 2014), ideally revealing properties or 
dynamics that can be mapped onto models and, ultimately, 
test theories. 
     Teaching computational neuroscience is, therefore, 
challenging and multifaceted.  Full understanding of a neural 
system should involve all three components (Fairhall, 2014), 
so students should gain some facility with all of these 
aspects.  Each aspect involves distinct disciplines of 
mathematics, engineering, computer science, physics, and 
statistics.   

Challenges 
Students have different needs or expectations for their 
training.  All emerging systems neuroscientists should gain 
sufficient mathematical background and coding skill  so they 
can manipulate data.  While some will want to attain 
proficiency in order to understand and use ideas and 
methods in experimental research, others want to specialize 
in theory.  However, to be able to develop novel conceptual 
theories or devise new data analysis methods, it is certainly 
helpful to have a deep grasp of at least one quantitative field 
— applied mathematics, statistics, physics, or computer 
science.  Thus, designing a training program in 
computational neuroscience at both undergraduate and 
graduate levels needs to handle diverse preparation and 
expectations.  Further, a program needs to provide a 
breadth of understanding and a grounding in basic 
neuroscience with the opportunity for depth of training in a 
specific field.  Given that students enter with a wide range of 
backgrounds, students and teachers can help to bridge 
some of the inevitable gaps. 
 
Core Coursework 
An ideal minimal coursework sequence will likely need to 
bridge undergraduate and graduate classes.  Given the 
increasing sophistication of analysis required for large data 
sets, undergraduate students thinking of entering systems 
neuroscience need to maintain a reasonably high level of 
core mathematics, whether they plan to become theorists or 
experimentalists.  Providing early information and 
encouragement to new undergraduates to maintain 
mathematical training can have high impact.  For example, 
early exposure in the freshman or sophomore year to 
neuroscience research talks can highlight the deep 
intersections of neuroscience and mathematical topics, and 
encourage students to maintain a high level of quantitative 
undergraduate coursework.   
     A sequence such as in Table 1 is recommended.  
Learning to code is obviously vital.  This learning could be 
done in a computer science class but can also be learned 
 

 
 
Figure 1.  Schema of conceptual areas within computational 
neuroscience and their roles in understanding biological 
computation.  (Adapted from Fairhall, 2014). 
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Table 1.  Topics for course work. 
 
alongside mathematics or data analysis methods or in the  
context of an “integrative” computational neuroscience 
class.   
 
Bridging classes 
Graduate school is not too late to learn computational 
methods.  Many institutions are now offering graduate 
classes in mathematical/quantitative methods for 
neuroscience.  The University of Washington teaches a 
class called “Quantitative Methods in Neuroscience,”  
offered both for computational neuroscience 
undergraduates and as a core class for all neuroscience 
graduate students.  The course consists of five modules: 
linear algebra, differential equations, Fourier transforms, 
stochastic processes, and principal component analysis.  
Each topic is studied for two weeks: one week of lectures 
and one week of interactive exercises buttressed by a 
classic neuroscience paper that students present that 
employs the method in the exercises.  Bringing together 
relatively mathematically sophisticated undergraduates and 
potentially mathematically naïve graduate students allows 
active two-way exchange in class exercises and 
presentations.  A key tool for this class is a set of MATLAB 
tutorials, which intersperse liberally commented code with 
pedagogical text and quiz prompts.  In these tutorials 
students: 
 
 Walk through basic commands with annotations 
 Perform computations and parameter variations 
 Describe outputs 
 Interpret results 
 Are prompted to write new code 
 Ponder/answer embedded open-ended questions 
 Can repurpose code in a novel way in a project. 

 

The outcome for this class is that all students gain a working 
ability to use MATLAB, and they gain exposure to 
mathematical ideas in sufficient depth to inspire them to do 
additional classes or reading where desired.  It helps 
students new to biology to see how mathematics can play 
an important role in framing and solving biology questions.  
The compressed format also allows pointing out the 
relationships between the topics, which are very often 
obscured when these subjects are learned in isolation — in 
particular, the key role of linear systems.   
 
Integrative Course Design 
In view of the multilevel interactions outlined in Figure 1, it 
would be ideal when possible to incorporate all three into 
teaching.  For students with diverse preparation, it can be 
especially important to motivate methods and analysis with 
a framing of the question being addressed.  One can begin 
with the question posed by the biological system; discuss 
and explain the big-picture framework and the mathematical 
underpinnings; consider concrete models; and teach 
methods to validate or explore models based on data.   
Incorporating a project for final assessment is an opportunity 
to consolidate learning of the process of interdisciplinary 
science. 
 
Be Hands-On 
In any computational neuroscience class, students should 
be coding up models and playing with data.  A key teaching 
decision is: Python or MATLAB? Both have pros and cons, 
as described in detail by Dr. Wallisch (see above).  MATLAB 
has a lower barrier for entry for newcomers to coding and 
can be preferable for undergraduates or introductory 
computational graduate classes that include students who 
will follow an experimental track.  For students specializing 
in computational fields, Python is a good long-term 
investment.   
 
Bridging Gaps 
Graduate students can pick up missing math as electives or 
by auditing; postdocs can also audit classes.  Online classes 
between undergraduate and graduate school can be a great 
way to supplement missing math classes from the “core” list; 
there are many high-quality options including Khan 
Academy for basics like linear algebra. 
 
Summer Schools 
Summer schools are an excellent accelerated option to gain 
rapid experience in computational neuroscience.  A large 
number are offered around the US and internationally, 
helpfully collected by Tom Burns at 
https://tfburns.github.io/compneuro-summer-schools/  and 
https://docs.google.com/spreadsheets/d/1b05MPR7bkxnw
KjzY-
6KHd_aDaV_68qwMhuFVu5IGG9g/edit#gid=276255682.  
These schools are often suited for more advanced students 
(senior graduate students and postdocs) but many 
specifically aim to cater to a wide range of backgrounds and 
to give a rapid leg up to students who want an intensive 
learning experience.  There are of course many other 

Course work in a computational neuroscience sequence 

Core background 
• Linear algebra 
• Differential equations 
• Probability and statistics 
Theory and modeling 
• Dynamical systems  
• Nonlinear dynamics 
• Statistical physics 
• Control theory 
 

Data analysis 
• Statistics 
• Signal processing 
• Machine learning 
 

Integrative 
• Computational neuroscience 
• Neural network theory 
• Reinforcement learning 
• Applications (motor control, sensory systems) 
• Journal club 
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benefits to summer schools: 
 
 Students form relationships with international peers 

which can continue throughout their careers 
 Many courses incorporate a project that is an 

excellent learning opportunity and a chance to work 
directly with a professor or teaching assistants  

 There are opportunities to interact extensively with 
well-known professors nationally and 
internationally to build career visibility. 

 
Two highly recommended courses are the Methods in 
Computational Neuroscience course at the Marine 
Biological Laboratory and the Summer Workshop for the 
Dynamic Brain, co-run by the Allen Institute for Brain 
Science and the University of Washington.  Both of these 
courses mix lectures on systems in neuroscience with 
mathematics and statistical methods and show how models 
are developed in application to the systems under 
discussion.  The recent success of Neuromatch Academy 
(Juavinett, 2020), which offered in depth training to almost 
2000 students worldwide online during the 2020 pandemic, 
is surely going to remain an important model for the future. 
 
Online Classes 
Particularly in the wake of COVID-19, online classes provide 
an important component of computational neuroscience 
teaching.  An online course on the Coursera platform, 
Computational Neuroscience, has served many students as 
an introduction to the field 
(https://www.coursera.org/learn/computational-
neuroscience).  Coursera also facilitates interaction 
between students.   

 
WALT BABIEC: GEOMETRY OF THE 
NERVOUS SYSTEM: A COURSE IN 
DYNAMICAL SYSTEMS ANALYSIS & 
MODELING OF NEURAL FUNCTION 
Living things change with time.  But how do we understand 
and make sense of that change? Are there no similarities in 
how organisms change with time? Is there a vocabulary that 
we can use to describe and differentiate that change? There 
is, and a UCLA course – Dynamical Systems Modeling of 
Physiological Systems – provides students in Neuroscience, 
Physiological Science, and Life Sciences with a rigorous, 
quantitative framework for describing dynamic behavior in 
living systems. 
     The course takes a dynamical systems approach to 
describing or modeling living systems.  The state of any 
system, whether it be a gene network, a cell, a whole 
organism, or an ecosystem, can be described by a set of 
time-varying state variables such as protein concentration, 
animal population, or genotype prevalence.  Differential 
equations or iterated maps are used to define how those 
state variables are changing at any instant.  They provide 
the road map to understanding how a system changes with 
time, whether certain changes with time are even possible, 
and what might happen to those forms of change if 

properties of the system change. 
     Before describing how to teach the dynamical systems 
approach to students whose first love is not mathematics, 
it’s important to understand the big ideas, the purpose for 
teaching them this material in the first place.  First, it is 
important to modernize students’ view of the meaning of 
homeostasis.  Rather than Cannon’s (1929) more rigid 
notion of keeping things standing still at a certain 
physiological set point, the course helps students recognize 
and understand that most homeostatic processes, such as 
regulation of Purkinje neuron firing rate, hypothalamic 
control of body temperature, or the sleep-wake and 
circadian cycles, are controlled oscillations rather than static 
equilibria.  While this may sound a little bit undefined in 
language, our dynamical systems viewpoint allows us to 
generate precise definitions that can be tested.  If the 
change in temperature, that is, T’ = 0, then we have true 
homeostasis.  If, however, T’ ≠ 0, but the trajectory of T 
repeats with time, we have a stable limit-cycle oscillation.  
The latter is what we see throughout physiological systems 
and nature as a whole. 
     This brings us to the next major point.  Real physiological 
systems are nonlinear, rely upon feedback, and operate with 
time delays.  While we often eschew nonlinearities in 
engineered systems, they are essential in physiological 
systems.  Simple but incredibly important decisions (for 
example, whether a neuron fires an action potential or 
remains quiescent) are nonlinear by their very nature and 
cannot be linearized without losing that behavior.  
Furthermore, oscillatory behavior requires negative 
feedback and time delays in order to operate properly.  
Again, a dynamical systems approach allows  observing and 
analyzing how the strength of the feedback and the length 
of the time delays affect the behavior of the physiological 
system being studied. 
     Finally, a dynamical systems viewpoint allows us to 
understand and observe how complex physiological 
behavior emerges from self-organized activity.  For 
example, every neuroscience student is taught that a neuron 
has a firing threshold.  If the membrane potential stays below 
threshold, the neuron doesn’t fire.  If the membrane potential 
exceeds threshold, the neuron fires an action potential.  But 
where is threshold stored? What protein or nucleotide 
sequence encodes threshold? After studying the Hodgkin-
Huxley equations and Fitzhugh’s simplified formulation of 
them, the students understand that threshold is an emergent 
property of the nonlinear interaction of the passive 
membrane properties of the neuron with voltage-activated 
Na+ and K+ channels.  Crossing threshold represents a 
Hopf bifurcation from equilibrium behavior at rest, to 
oscillatory behavior during action potential firing.  Action 
potentials, therefore, are an emergent property of solubilized 
ions, lipids, and proteins whose dynamic interactions can be 
described effectively and efficiently with a system of four 
ordinary differential equations, the Hodgkin-Huxley 
equations. 
     Most of the students are not biomathematics or 
quantitative biology majors.  Also, they are not experienced 
modelers.  So, we take an approach where they learn the 
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basics of how to analyze and model dynamical systems 
without lengthy derivations or proofs.  In fact, the students 
never even solve a system of differential equations 
analytically, because, as they learn, most non-linear 
differential equations lack analytic solutions.  The approach 
is laid out in a wonderful textbook by Garfinkel et al. 
Modeling Life (2017 — video lectures are available for free 
at https://modelinginbiology.github.io/videos/).  This book 
not only makes dynamical systems, including chaotic ones, 
easily understandable for Life Sciences students, but also 
the examples in the book are centered around physiological, 
ecological, and epidemiological systems rather than the 
usual assortment of physical systems (e.g., mass-spring, 
pendulum, and planetary) that form the basis of most books 
on the topic of dynamical systems. 
     The UCLA course takes place during a single ten-week 
quarter.  In class, the course lays out the underpinnings of 
the dynamical systems approach.  Students are given ample 
opportunities to work with this approach in weekly simulation 
laboratories that are overseen by teaching assistants who 
are highly skilled in the analysis and interpretation of 
dynamical systems.  Rather than forcing students into 
learning a lot of coding skills while also learning about 
dynamical systems, the class employs an inexpensive and 
simple to use but powerful modeling program called 
Berkeley Madonna (2021) that is available for both Windows 
and MacOS devices.  Students are assessed using a variety 
of methods, including 1) in-class exams to assess their 
understanding of dynamical systems thinking, 2) simulation 
laboratory exercises to assess their development as 
implementers, 3) interpretation of models, 4) and finally a 
modeling project where students develop models in areas of 
their own interest that put together all of what they learn. 
     When the course is complete, the students are able to 
analyze the behavior of systems of ordinary nonlinear 
differential equations for equilibria and, more generally, 
attractors, as well as qualitative changes in the dynamic 
behavior of these systems with changes in parameter values 
(bifurcations).  They are able to develop differential equation 
models of biological systems, including the identification of 
relevant state variables and their feedforward and feedback 
interactions.  In addition, they know how to use computer 
simulations to calculate and visualize the behavior of 
particular solutions to differential equation models of 
biological systems.  Most importantly, they become 
proficient enough in these skills to develop and simulate de 
novo differential equations models from basic system 
descriptions. 
     Dynamical systems are the language of nature.  
Understanding how to describe natural systems in terms of 
dynamical systems and then analyze the behavior that 
emerges from them empowers students to go from 
describing  what may be happening based on linear thinking 
about first principles, to what is actually happening and what 
can (and, just as importantly, cannot) emerge from the 
behavior of these systems.  Solving 21st-century problems 
in biology requires contemporary quantitative thinking.  Only 
then can we truly appreciate the importance and beauty of 
the geometry of nature. 

MATHEW ABRAMS: TRAININGSPACE: 
RESOURCES FOR COMPUTATIONAL 
NEUROSCIENCE & NEUROEDUCATION 
WITHOUT BORDERS  
The International Neuroinformatics Coordinating Facility 
(INCF) now includes TrainingSpace  
(https://training.incf.org/), an online hub to make 
neuroscience educational materials more accessible to the 
global neuroscience community.  TrainingSpace was 
developed in collaboration with INCF, HBP, SfN, FENS, 
IBRO, IEEE, BD2K, and the iNeuro Initiative.  As a hub, 
TrainingSpace provides users with access to: 
 
● Multimedia educational content from courses, 

conference lectures, and laboratory exercises from 
some of the world’s leading neuroscience institutes 
and societies. 

● Four study tracks (Neuroinformatics, 
Computational Neuroscience, Neuroscience, and 
Brain Medicine) to facilitate self-guided study. 

● Tutorials/demonstrations of resources (tools, 
software, and services) available for neuroscience 
research. 

● Neurostars.org, a Q&A forum.   
● KnowledgeSpace, a data discoverability 

portal/encyclopedia for neuroscience that provides 
users with access to over 1,600,000 files of publicly 
available data and models as well as links to 
literature references and scientific abstracts. 

 
     In addition to the subject themes of the four study tracks 
(neuroinformatics, computational neuroscience, brain 
medicine, and neuroscience), TrainingSpace also includes 
lectures, courses, and tutorials in computer science, data 
science, ethics, career development, and open science.  All 
content objects in TrainingSpace include a general 
description, learning objectives/topics covered, difficulty 
level, and links to required software/tools and prerequisites 
courses/lectures.  Many lectures also include downloadable 
lecture notes and slides and links to Jupyter notebooks, 
code repositories, and sample datasets.  TrainingSpace 
also provides access to tutorials on open science resources 
that instructors could incorporate into their courses 
(instructors are free to include all multimedia content found 
in TrainingSpace into their courses). 
     To facilitate self-guided learning in TrainingSpace, INCF 
is pursuing its integration with Neurostars.org, a question 
and answer forum for neuroscience researchers, 
infrastructure providers and software developers.  
Neurostars provides access to experts from around the 
world for students and teachers.  Sample datasets and 
models are available in KnowledgeSpace 
(https://knowledge-space.org/), which was developed jointly 
by INCF, the Human Brain Project, and the Neuroscience 
Information Framework (NIF).  KnowledgeSpace is a 
repository of global neuroscience web resources, including 
experimental, clinical, and translational neuroscience 
databases, knowledge bases, atlases, and genetic/genomic  
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resources, all of which have been integrated into 
TrainingSpace.  KnowledgeSpace also serves as an 
encyclopedia for neuroscience that combines general 
descriptions found in Wikipedia with more detailed content 
from InterLex, a dynamic lexicon of neuroscience concepts 
supported by NIF.  KnowledgeSpace then integrates the 
content from those two sources with the latest neuroscience 
citations found in PubMed and data found in some of the 
world’s leading neuroscience repositories.   
 
CONCLUSION 
Speakers in this workshop offered a variety of viewpoints.  
One that was widely endorsed was providing hands-on 
instruction, including the use of resources that allow  
learning with actual data sets, as described by Dr. Abrams.  
There were differences in opinion about how steeped in 
mathematical training students need to be; both Dr. Fairhall 
and Dr. Kass suggested the need for a fairly rigorous 
background, while Dr. Babiec described a course in which 
differential equations are not necessary.  As for whether 
Python or MATLAB is better for implementing algorithms, 
both approaches are valuable depending on your students' 
background and which pedagogical objectives you want to 
achieve.    
     The future will no doubt provide even more complex 
computational models that strive to integrate levels from the 
molecular to the behavioral.  The organizers believe that this 
workshop will help faculty to teach computational aspects of 
neuroscience at both the undergraduate and graduate 
levels.   
     Videos of the workshop can be viewed at the Society for 
Neuroscience's Neuronline website:  
https://neuronline.sfn.org/career-paths/teaching-
computation-in-neuroscience.  Viewing is unlimited for SfN 
members, and currently includes up to five free articles for 
others.   
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