132 research outputs found
Early Intervention Service Delivery via Telehealth During COVID-19: A Research-Practice Partnership
Coaching has been identified as a best practice for early intervention (EI) services provided through the Individuals with Disabilities Education Act (IDEA) Part C. The current study describes the establishment and progress of a research-relationship partnership to deliver coaching via telehealth during the COVID-19 pandemic. Community-based EI providers implemented 9-weeks of telehealth coaching and evaluated the extent to which child and caregiver outcomes differed between families that had previously received in-person services versus telehealth only. Four EI providers completed the intervention with n=17 families of children aged 6-34 months during the pandemic (April-August 2020). We used the Canadian Occupational Performance Measure (COPM) and Goal Attainment Scaling (GAS) to collect outcomes on caregiver identified goals; we used Wilcoxon Signed Rank Tests to examine pre- to post-intervention data. Results showed significant improvements in parent satisfaction, child performance, and goal attainment (all p<.01). Findings suggest that telehealth coaching procedures implemented by community-based EI providers resulted in improvements in caregiver identified goals for young children
Speech-to-Speech synchronization protocol to classify human participants as high or low auditory-motor synchronizers
The ability to synchronize a motor action to a rhythmic auditory stimulus is often considered an innate human skill. However, some individuals lack the ability to synchronize speech to a perceived syllabic rate. Here, we describe a simple and fast protocol to classify a single native English speaker as being or not being a speech synchronizer. This protocol consists of four parts: the pretest instructions and volume adjustment, the training procedure, the execution of the main task, and data analysis
Cerebrospinal Fluid NLRP3 is Increased After Severe Traumatic Brain Injury in Infants and Children
Background: Inflammasome-mediated neuroinflammation may cause secondary injury following traumatic brain injury (TBI) in children. The pattern recognition receptors NACHT domain-, Leucine-rich repeat-, and PYD-containing Protein 1 (NLRP1) and NLRP3 are essential components of their respective inflammasome complexes. We sought to investigate whether NLRP1 and/or NLRP3 abundance is altered in children with severe TBI.
Methods: Cerebrospinal fluid (CSF) from children (n = 34) with severe TBI (Glasgow coma scale score [GCS] ≤8) who had externalized ventricular drains (EVD) placed for routine care was evaluated for NLRP1 and NLRP3 at 0-24, 25-48, 49-72, and >72 h post-TBI and was compared to infection-free controls that underwent lumbar puncture to rule out CNS infection (n = 8). Patient age, sex, initial GCS, mechanism of injury, treatment with therapeutic hypothermia, and 6-month Glasgow outcome score were collected.
Results: CSF NLRP1 was undetectable in controls and detected in 2 TBI patients at only 4 (15.50 [3.65-25.71] vs. 3.04 [1.52-8.87] ng/mL, respectively; p = 0.048). Controlling for initial GCS in multivariate analysis, peak NLRP3 >6.63 ng/mL was independently associated with poor outcome at 6 months.
Conclusions: In the first report of NLRP1 and NLRP3 in childhood neurotrauma, we found that CSF NLRP3 is elevated in children with severe TBI and independently associated with younger age and poor outcome. Future studies correlating NLRP3 with other markers of inflammation and response to therapy are warranted
Regulation of CLC-Ka/barttin by the ubiquitin ligase Nedd4-2 and the serum- and glucocorticoid-dependent kinases
Regulation of ClC-Ka/barttin by the ubiquitin ligase Nedd4-2 and the serum- and glucocorticoid-dependent kinases.BackgroundClC-Ka and ClC-Kb, chloride channels participating in renal tubular Cl− transport, require the coexpression of barttin to become functional. Mutations of the barttin gene lead to the Bartter's syndrome variant BSND, characterized by congenital deafness and severe renal salt wasting. Barttin bears a proline-tyrosine motif, a target structure for the ubiquitin ligase Nedd4-2, which mediates the clearance of channel proteins from the cell membrane. Nedd4-2 is, in turn, a target of the serum- and glucocorticoid-inducible kinase SGK1, which phosphorylates and, thus, inactivates the ubiquitin ligase. ClC-Ka also possesses a SGK1 consensus site in its sequence. We hypothesized that ClC-Ka/barttin is stimulated by SGK1, and down-regulated by Nedd4-2, an effect that may be reversed by SGK1 and its isoforms, SGK2 or SGK3.MethodsTo test this hypothesis, ClC-Ka/barttin was heterologously expressed in Xenopus oocytes with or without the additional expression of Nedd4-2, SGK1, SGK2, SGK3, constitutively active S422DSGK1, or inactive K127NSGK1.ResultsExpression of ClC-Ka/barttin induced a slightly inwardly rectifying current that was significantly decreased upon coexpression of Nedd4-2, but not the catalytically inactive mutant C938SNedd4-2. The coexpression of S422DSGK1, SGK1, or SGK3, but not SGK2 or K127NSGK1 significantly stimulated the current. Moreover, S422DSGK1, SGK1, and SGK3 also phosphorylated Nedd4-2 and thereby inhibited Nedd4-2 binding to its target. The down-regulation of ClC-Ka/barttin by Nedd4-2 was abolished by elimination of the PY motif in barttin.ConclusionClC-Ka/barttin channels are regulated by SGK1 and SGK3, which may thus participate in the regulation of transport in kidney and inner ear
Report of the Topical Group on Cosmic Frontier 5 Dark Energy and Cosmic Acceleration: Cosmic Dawn and Before for Snowmass 2021
This report summarizes the envisioned research activities as gathered from
the Snowmass 2021 CF5 working group concerning Dark Energy and Cosmic
Acceleration: Cosmic Dawn and Before. The scientific goals are to study
inflation and to search for new physics through precision measurements of relic
radiation from the early universe. The envisioned research activities for this
decade (2025-35) are constructing and operating major facilities and developing
critical enabling capabilities. The major facilities for this decade are the
CMB-S4 project, a new Stage-V spectroscopic survey facility, and existing
gravitational wave observatories. Enabling capabilities include aligning and
investing in theory, computation and model building, and investing in new
technologies needed for early universe studies in the following decade (2035+).Comment: contribution to Snowmass 202
Spectral Distortions of the CMB as a Probe of Inflation, Recombination, Structure Formation and Particle Physics
Following the pioneering observations with COBE in the early 1990s, studies
of the cosmic microwave background (CMB) have focused on temperature and
polarization anisotropies. CMB spectral distortions - tiny departures of the
CMB energy spectrum from that of a perfect blackbody - provide a second,
independent probe of fundamental physics, with a reach deep into the primordial
Universe. The theoretical foundation of spectral distortions has seen major
advances in recent years, which highlight the immense potential of this
emerging field. Spectral distortions probe a fundamental property of the
Universe - its thermal history - thereby providing additional insight into
processes within the cosmological standard model (CSM) as well as new physics
beyond. Spectral distortions are an important tool for understanding inflation
and the nature of dark matter. They shed new light on the physics of
recombination and reionization, both prominent stages in the evolution of our
Universe, and furnish critical information on baryonic feedback processes, in
addition to probing primordial correlation functions at scales inaccessible to
other tracers. In principle the range of signals is vast: many orders of
magnitude of discovery space could be explored by detailed observations of the
CMB energy spectrum. Several CSM signals are predicted and provide clear
experimental targets, some of which are already observable with present-day
technology. Confirmation of these signals would extend the reach of the CSM by
orders of magnitude in physical scale as the Universe evolves from the initial
stages to its present form. The absence of these signals would pose a huge
theoretical challenge, immediately pointing to new physics.Comment: Astro2020 Science White Paper, 5 pages text, 13 pages in total, 3
Figures, minor update to reference
Decline of Leach’s Storm Petrels Hydrobates leucorhous at the largest colonies in the northeast Atlantic
Leach’s Storm Petrel Hydrobates leucorhous has undergone substantial population declines at North Atlantic colonies over recent decades, but censusing the species is challenging because it nests in burrows and is only active at colonies at night. Acoustic playback surveys allow birds present in nest sites to be detected when they respond to recordings of vocalisations. However, not all birds respond to playback on every occasion, response rate is likely to decline with increasing distance between the bird and the playback location, and the observer may not detect all responses. As a result, various analysis methods have been developed to measure and correct for these imperfect response and detection probabilities. We applied two classes of methods (calibration plot and hierarchical distance sampling) to acoustic survey data from the two largest colonies of breeding Leach’s Storm Petrels in the northeast Atlantic: the St Kilda archipelago off the coast of northwest Scotland, and the island of Elliðaey in the Vestmannaeyjar archipelago off the southwest of Iceland. Our results indicate an overall decline of 68% for the St Kilda archipelago between 2000 and 2019, with a current best estimate of ~8,900 (95% CI: 7,800–10,100) pairs. The population on Elliðaey appears to have declined by 40 –49% between 1991 and 2018, with a current best estimate of ~5,400 (95% CI: 4,300–6,700) pairs. We also discuss the relative efficiency and precision of the two survey methods
Decline of Leach’s Storm Petrels Hydrobates leucorhous at the largest colonies in the northeast Atlantic
Leach’s Storm Petrel Hydrobates leucorhous has undergone substantial population declines at North Atlantic colonies over recent decades, but censusing the species is challenging because it nests in burrows and is only active at colonies at night. Acoustic playback surveys allow birds present in nest sites to be detected when they respond to recordings of vocalisations. However, not all birds respond to playback on every occasion, response rate is likely to decline with increasing distance between the bird and the playback location, and the observer may not detect all responses. As a result, various analysis methods have been developed to measure and correct for these imperfect response and detection probabilities. We applied two classes of methods (calibration plot and hierarchical distance sampling) to acoustic survey data from the two largest colonies of breeding Leach’s Storm Petrels in the northeast Atlantic: the St Kilda archipelago off the coast of northwest Scotland, and the island of Elliðaey in the Vestmannaeyjar archipelago off the southwest of Iceland. Our results indicate an overall decline of 68% for the St Kilda archipelago between 2000 and 2019, with a current best estimate of ~8,900 (95% CI: 7,800–10,100) pairs. The population on Elliðaey appears to have declined by 40 –49% between 1991 and 2018, with a current best estimate of ~5,400 (95% CI: 4,300–6,700) pairs. We also discuss the relative efficiency and precision of the two survey methods
Feebly-interacting particles: FIPs 2022 Workshop Report
Particle physics today faces the challenge of explaining the mystery of dark matter, the origin of matter over anti-matter in the Universe, the origin of the neutrino masses, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves new physics at mass scales comparable to familiar matter, below the GeV-scale, or even radically below, down to sub-eV scales, and with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and indeed, existing data provide numerous hints for such possibility. A vibrant experimental program to discover such physics is under way, guided by a systematic theoretical approach firmly grounded on the underlying principles of the Standard Model. This document represents the report of the FIPs 2022 workshop, held at CERN between the 17 and 21 October 2022 and aims to give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs
- …