2,022 research outputs found

    Spin Dynamics in the Second Subband of a Quasi Two Dimensional System Studied in a Single Barrier Heterostructure by Time Resolved Kerr Rotation

    Full text link
    By biasing a single barrier heterostructure with a 500nm-thick GaAs layer as the absorption layer, the spin dynamics for both of the first and second subband near the AlAs barrier are examined. We find that when simultaneously scanning the photon energy of both the probe and pump beams, a sign reversal of the Kerr rotation (KR) takes place as long as the probe photons break away the first subband and probe the second subband. This novel feature, while stemming from the exchange interaction, has been used to unambiguously distinguish the different spin dynamics (T21∗T_2^{1*} and T22∗T_2^{2*}) for the first and second subbands under the different conditions by their KR signs (negative for 1st1^{st} and positive for 2nd2^{nd}). In the zero magnetic field, by scanning the wavelength towards the short wavelength, T21∗T_2^{1*} decreases in accordance with the D'yakonov-Perel' (DP) spin decoherence mechanism. At 803nm, T22∗T_2^{2*}(450ps) becomes ten times longer than T21∗T_2^{1*}(50ps). However, the value of T22∗T_2^{2*} at 803nm is roughly the same as the value of T21∗T_2^{1*} at 815nm. A new feature has been disclosed at the wavelength of 811nm under the bias of -0.3V (807nm under the bias of -0.6V) that the spin coherence times (T21∗T_2^{1*} and T22∗T_2^{2*}) and the effective g∗g^* factors (∣g∗(E1)∣|g^*(E1)| and ∣g∗(E2)∣|g^*(E2)|) all display a sudden change, due to the "resonant" spin exchange coupling between two spin opposite bands.Comment: 9pages, 3 figure

    All Teleportation and Dense Coding Schemes

    Get PDF
    We establish a one-to-one correspondence between (1) quantum teleportation schemes, (2) dense coding schemes, (3) orthonormal bases of maximally entangled vectors, (4) orthonormal bases of unitary operators with respect to the Hilbert-Schmidt scalar product, and (5) depolarizing operations, whose Kraus operators can be chosen to be unitary. The teleportation and dense coding schemes are assumed to be ``tight'' in the sense that all Hilbert spaces involved have the same finite dimension d, and the classical channel involved distinguishes d^2 signals. A general construction procedure for orthonormal bases of unitaries, involving Latin Squares and complex Hadamard Matrices is also presented.Comment: 21 pages, LaTe

    Doppler cooling and trapping on forbidden transitions

    Get PDF
    Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of ^40Ca atoms has been cooled and trapped to a temperature as low as 6 \mu K by operating a magneto-optical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method more than 10% of pre-cooled atoms from a standard magneto-optical trap have been transferred to the ultracold trap. Monte-Carlo simulations of the cooling process are in good agreement with the experiments

    Quantum Revivals in a Periodically Driven Gravitational Cavity

    Get PDF
    Quantum revivals are investigated for the dynamics of an atom in a driven gravitational cavity. It is demonstrated that the external driving field influences the revival time significantly. Analytical expressions are presented which are based on second order perturbation theory and semiclassical secular theory. These analytical results explain the dependence of the revival time on the characteristic parameters of the problem quantitatively in a simple way. They are in excellent agreement with numerical results

    Quantum Revivals in Periodically Driven Systems close to nonlinear resonance

    Full text link
    We calculate the quantum revival time for a wave-packet initially well localized in a one-dimensional potential in the presence of an external periodic modulating field. The dependence of the revival time on various parameters of the driven system is shown analytically. As an example of application of our approach, we compare the analytically obtained values of the revival time for various modulation strengths with the numerically computed ones in the case of a driven gravitational cavity. We show that they are in very good agreement.Comment: 14 pages, 1 figur

    High-accuracy relativistic many-body calculations of van der Waals coefficients C_6 for alkaline-earth atoms

    Get PDF
    Relativistic many-body calculations of van der Waals coefficients C_6 for dimers correlating to two ground state alkaline-earth atoms at large internuclear separations are reported. The following values and uncertainties were determined : C_6 = 214(3) for Be, 627(12) for Mg, 2221(15) for Ca, 3170(196) for Sr, and 5160(74) for Ba in atomic units.Comment: 5 pages, submitted to Phys. Rev.

    Interference of Bose-Einstein condensates in momentum space

    Full text link
    We suggest an experiment to investigate the linear superposition of two spatially separated Bose-Einstein condensates. Due to the coherent combination of the two wave functions, the dynamic structure factor, measurable through inelastic photon scattering at high momentum transfer qq, is predicted to exhibit interference fringes with frequency period Δν=q/md\Delta\nu = q/md where dd is the distance between the condensates. We show that the coherent configuration corresponds to an eigenstate of the physical observable measured in the experiment and that the relative phase of the condensates is hence created through the measurement process.Comment: 4 pages and 2 eps figure

    Interference scheme to measure light-induced nonlinearities in Bose-Einstein condensates

    Full text link
    Light-induced nonlinear terms in the Gross-Pitaevskii equation arise from the stimulated coherent exchange of photons between two atoms. For atoms in an optical dipole trap this effect depends on the spatial profile of the trapping laser beam. Two different laser beams can induce the same trapping potential but very different nonlinearities. We propose a scheme to measure light-induced nonlinearities which is based on this observation.Comment: 2 figure

    Effect of vessel wettability on the foamability of "ideal" surfactants and "real-world" beer heads

    Get PDF
    The ability to tailor the foaming properties of a solution by controlling its chemical composition is highly desirable and has been the subject of extensive research driven by a range of applications. However, the control of foams by varying the wettability of the foaming vessel has been less widely reported. This work investigates the effect of the wettability of the side walls of vessels used for the in situ generation of foam by shaking aqueous solutions of three different types of model surfactant systems (non-ionic, anionic and cationic surfactants) along with four different beers (Guinness Original, Banks’s Bitter, Bass No 1 and Harvest Pale). We found that hydrophilic vials increased the foamability only for the three model systems but increased foam stability for all foams except the model cationic system. We then compared stability of beer foams produced by shaking and pouring and demonstrated weak qualitative agreement between both foam methods. We also showed how wettability of the glass controls bubble nucleation for beers and champagne and used this effect to control exactly where bubbles form using simple wettability patterns

    Discrete breathers in classical spin lattices

    Full text link
    Discrete breathers (nonlinear localised modes) have been shown to exist in various nonlinear Hamiltonian lattice systems. In the present paper we study the dynamics of classical spins interacting via Heisenberg exchange on spatial dd-dimensional lattices (with and without the presence of single-ion anisotropy). We show that discrete breathers exist for cases when the continuum theory does not allow for their presence (easy-axis ferromagnets with anisotropic exchange and easy-plane ferromagnets). We prove the existence of localised excitations using the implicit function theorem and obtain necessary conditions for their existence. The most interesting case is the easy-plane one which yields excitations with locally tilted magnetisation. There is no continuum analogue for such a solution and there exists an energy threshold for it, which we have estimated analytically. We support our analytical results with numerical high-precision computations, including also a stability analysis for the excitations.Comment: 15 pages, 12 figure
    • …
    corecore