2,022 research outputs found
Spin Dynamics in the Second Subband of a Quasi Two Dimensional System Studied in a Single Barrier Heterostructure by Time Resolved Kerr Rotation
By biasing a single barrier heterostructure with a 500nm-thick GaAs layer as
the absorption layer, the spin dynamics for both of the first and second
subband near the AlAs barrier are examined. We find that when simultaneously
scanning the photon energy of both the probe and pump beams, a sign reversal of
the Kerr rotation (KR) takes place as long as the probe photons break away the
first subband and probe the second subband. This novel feature, while stemming
from the exchange interaction, has been used to unambiguously distinguish the
different spin dynamics ( and ) for the first and second
subbands under the different conditions by their KR signs (negative for
and positive for ). In the zero magnetic field, by scanning
the wavelength towards the short wavelength, decreases in accordance
with the D'yakonov-Perel' (DP) spin decoherence mechanism. At 803nm,
(450ps) becomes ten times longer than (50ps). However, the
value of at 803nm is roughly the same as the value of at
815nm. A new feature has been disclosed at the wavelength of 811nm under the
bias of -0.3V (807nm under the bias of -0.6V) that the spin coherence times
( and ) and the effective factors ( and
) all display a sudden change, due to the "resonant" spin exchange
coupling between two spin opposite bands.Comment: 9pages, 3 figure
All Teleportation and Dense Coding Schemes
We establish a one-to-one correspondence between (1) quantum teleportation
schemes, (2) dense coding schemes, (3) orthonormal bases of maximally entangled
vectors, (4) orthonormal bases of unitary operators with respect to the
Hilbert-Schmidt scalar product, and (5) depolarizing operations, whose Kraus
operators can be chosen to be unitary. The teleportation and dense coding
schemes are assumed to be ``tight'' in the sense that all Hilbert spaces
involved have the same finite dimension d, and the classical channel involved
distinguishes d^2 signals. A general construction procedure for orthonormal
bases of unitaries, involving Latin Squares and complex Hadamard Matrices is
also presented.Comment: 21 pages, LaTe
Doppler cooling and trapping on forbidden transitions
Ultracold atoms at temperatures close to the recoil limit have been achieved
by extending Doppler cooling to forbidden transitions. A cloud of ^40Ca atoms
has been cooled and trapped to a temperature as low as 6 \mu K by operating a
magneto-optical trap on the spin-forbidden intercombination transition.
Quenching the long-lived excited state with an additional laser enhanced the
scattering rate by a factor of 15, while a high selectivity in velocity was
preserved. With this method more than 10% of pre-cooled atoms from a standard
magneto-optical trap have been transferred to the ultracold trap. Monte-Carlo
simulations of the cooling process are in good agreement with the experiments
Quantum Revivals in a Periodically Driven Gravitational Cavity
Quantum revivals are investigated for the dynamics of an atom in a driven
gravitational cavity. It is demonstrated that the external driving field
influences the revival time significantly. Analytical expressions are presented
which are based on second order perturbation theory and semiclassical secular
theory. These analytical results explain the dependence of the revival time on
the characteristic parameters of the problem quantitatively in a simple way.
They are in excellent agreement with numerical results
Quantum Revivals in Periodically Driven Systems close to nonlinear resonance
We calculate the quantum revival time for a wave-packet initially well
localized in a one-dimensional potential in the presence of an external
periodic modulating field. The dependence of the revival time on various
parameters of the driven system is shown analytically. As an example of
application of our approach, we compare the analytically obtained values of the
revival time for various modulation strengths with the numerically computed
ones in the case of a driven gravitational cavity. We show that they are in
very good agreement.Comment: 14 pages, 1 figur
High-accuracy relativistic many-body calculations of van der Waals coefficients C_6 for alkaline-earth atoms
Relativistic many-body calculations of van der Waals coefficients C_6 for
dimers correlating to two ground state alkaline-earth atoms at large
internuclear separations are reported. The following values and uncertainties
were determined : C_6 = 214(3) for Be, 627(12) for Mg, 2221(15) for Ca,
3170(196) for Sr, and 5160(74) for Ba in atomic units.Comment: 5 pages, submitted to Phys. Rev.
Interference of Bose-Einstein condensates in momentum space
We suggest an experiment to investigate the linear superposition of two
spatially separated Bose-Einstein condensates. Due to the coherent combination
of the two wave functions, the dynamic structure factor, measurable through
inelastic photon scattering at high momentum transfer , is predicted to
exhibit interference fringes with frequency period where
is the distance between the condensates. We show that the coherent
configuration corresponds to an eigenstate of the physical observable measured
in the experiment and that the relative phase of the condensates is hence
created through the measurement process.Comment: 4 pages and 2 eps figure
Interference scheme to measure light-induced nonlinearities in Bose-Einstein condensates
Light-induced nonlinear terms in the Gross-Pitaevskii equation arise from the
stimulated coherent exchange of photons between two atoms. For atoms in an
optical dipole trap this effect depends on the spatial profile of the trapping
laser beam. Two different laser beams can induce the same trapping potential
but very different nonlinearities. We propose a scheme to measure light-induced
nonlinearities which is based on this observation.Comment: 2 figure
Effect of vessel wettability on the foamability of "ideal" surfactants and "real-world" beer heads
The ability to tailor the foaming properties of a solution by controlling its chemical composition is highly desirable and has been the subject of extensive research driven by a range of applications. However, the control of foams by varying the wettability of the foaming vessel has been less widely reported. This work investigates the effect of the wettability of the side walls of vessels used for the in situ generation of foam by shaking aqueous solutions of three different types of model surfactant systems (non-ionic, anionic and cationic surfactants) along with four different beers (Guinness Original, Banks’s Bitter, Bass No 1 and Harvest Pale). We found that hydrophilic vials increased the foamability only for the three model systems but increased foam stability for all foams except the model cationic system. We then compared stability of beer foams produced by shaking and pouring and demonstrated weak qualitative agreement between both foam methods. We also showed how wettability of the glass controls bubble nucleation for beers and champagne and used this effect to control exactly where bubbles form using simple wettability patterns
Discrete breathers in classical spin lattices
Discrete breathers (nonlinear localised modes) have been shown to exist in
various nonlinear Hamiltonian lattice systems. In the present paper we study
the dynamics of classical spins interacting via Heisenberg exchange on spatial
-dimensional lattices (with and without the presence of single-ion
anisotropy). We show that discrete breathers exist for cases when the continuum
theory does not allow for their presence (easy-axis ferromagnets with
anisotropic exchange and easy-plane ferromagnets). We prove the existence of
localised excitations using the implicit function theorem and obtain necessary
conditions for their existence. The most interesting case is the easy-plane one
which yields excitations with locally tilted magnetisation. There is no
continuum analogue for such a solution and there exists an energy threshold for
it, which we have estimated analytically. We support our analytical results
with numerical high-precision computations, including also a stability analysis
for the excitations.Comment: 15 pages, 12 figure
- …