50 research outputs found

    Reappearance of old growth elements in lowland woodlands in northern Belgium : do the associated species follow?

    Get PDF
    The forest cover of the western European lowland plain has been very low for centuries. Remaining forests were intensively managed, and old-growth elements like veteran trees and coarse woody debris became virtually absent. Only over the last decades have these old-growth elements progressively redeveloped in parks, lanes and forests, and have now reached their highest level over the last 500-1000 years. Biodiversity associated with these old-growth elements makes up an important part of overall forest biodiversity. The ability of species to recolonise the newly available habitat is strongly determined by limitations in their dispersal and establishment. We analyse the current status and development of old-growth elements in Flanders (northern Belgium) and the process of recolonisation by means of specific cases, focussing on saproxylic fungi and saproxylic beetles. Our results show that 'hotspots' of secondary old growth, even isolated small patches, may have more potential for specialised biodiversity than expected, and may provide important new strongholds for recovery and recolonisation of an important share of old-growth related species

    The effects of habitat degradation on metacommunity structure of wood-inhabiting fungi in European beech forests

    Get PDF
    Intensive forest management creates habitat degradation by reducing the variation of forest stands in general, and by removing old trees and dead wood in particular. Non-intervention forest reserves are commonly believed to be the most efficient tool to counteract the negative effects on biodiversity, but actual knowledge of the conservation efficiency is limited, especially for recent reserves. The structure of ecological communities is often described with measures of nestedness, beta diversity and similarity between communities. We studied whether these measures differ among forest reserves with different management histories. For this purpose, we used a large data set of wood-inhabiting fungi collected from dead beech trees in European beech-dominated forest reserves. The structure of fungal assemblages showed high beta diversity, while nestedness and similarity was low. During the decomposition process of trees beta diversity between the communities occupying different trees increased in natural, but not in previously managed sites. Effects of management and decay process on nestedness were complex. We argue that the detected differences most likely reflect historical effects which have extirpated specialized species from the local species pools in managed sites, and resulted in more homogeneous communities in managed sites. It is alarming that community structure is affected the most in the latest decay stages where the decay process turns the dead wood into litter, and which is thus the interface between the wood decay and the litter-decaying ecosystem. The effects of simplified communities in late decay stages on soil biodiversity should be studied

    Melkzwammen.

    No full text
    corecore