86 research outputs found

    Diet analysis of wintering waterfowl in the Southeastern United States in relation to ecoregion, habitat, and guild

    Get PDF
    Wintering waterfowl diet has been studied across North America to gain a better understanding of their foraging habits and feeding ecology. There is a need for a better understanding of waterfowl foraging based on ecoregion, guild, and habitats of wintering waterfowl, especially within the Mississippi Flyway. This study investigated the stomach content of wintering waterfowl in the Southeast United States, within the Mississippi Flyway region. The esophagus, proventriculus, and gizzard of each specimen were removed, dried, and sorted for statistical analysis. Multiple two-way ANOVAs were run to test the effects of ecoregion, habitat, and guild on total mass and diet mass in waterfowl. A difference between years was determined so separate analyses were conducted for each year. My results suggest that there was a significant difference in 2014 data for ecoregion by habitat within the Ridge and Valley ecoregion. Total diet composition results suggest that waterfowl consume different food components in each ecoregion. When analyzing guild diet composition, the results suggest that each guild consumes different types of food products, with the dabblers consuming the most agricultural products, divers consuming the most varied diet, and geese consuming the most grasses

    Arabidopsis bioinformatics resources: The current state, challenges, and priorities for the future

    Get PDF
    Effective research, education, and outreach efforts by the Arabidopsis thalianacommunity, as well as other scientific communities that depend on Arabidopsis resources, depend vitally on easily available and publicly‐shared resources. These resources include reference genome sequence data and an ever‐increasing number of diverse data sets and data types. TAIR (The Arabidopsis Information Resource) and Araport (originally named the Arabidopsis Information Portal) are community informatics resources that provide tools, data, and applications to the more than 30,000 researchers worldwide that use in their work either Arabidopsis as a primary system of study or data derived from Arabidopsis. Four years after Araport\u27s establishment, the IAIC held another workshop to evaluate the current status of Arabidopsis Informatics and chart a course for future research and development. The workshop focused on several challenges, including the need for reliable and current annotation, community‐defined common standards for data and metadata, and accessible and user‐friendly repositories/tools/methods for data integration and visualization. Solutions envisioned included (a) a centralized annotation authority to coalesce annotation from new groups, establish a consistent naming scheme, distribute this format regularly and frequently, and encourage and enforce its adoption. (b) Standards for data and metadata formats, which are essential, but challenging when comparing across diverse genotypes and in areas with less‐established standards (e.g., phenomics, metabolomics). Community‐established guidelines need to be developed. (c) A searchable, central repository for analysis and visualization tools. Improved versioning and user access would make tools more accessible. Workshop participants proposed a “one‐stop shop” website, an Arabidopsis “Super‐Portal” to link tools, data resources, programmatic standards, and best practice descriptions for each data type. This must have community buy‐in and participation in its establishment and development to encourage adoption

    qTeller: a tool for comparative multi-genomic gene expression analysis

    Get PDF
    Motivation: Over the last decade, RNA-Seq whole-genome sequencing has become a widely used method for measuring and understanding transcriptome-level changes in gene expression. Since RNA-Seq is relatively inexpensive, it can be used on multiple genomes to evaluate gene expression across many different conditions, tissues and cell types. Although many tools exist to map and compare RNA-Seq at the genomics level, few web-based tools are dedicated to making data generated for individual genomic analysis accessible and reusable at a gene-level scale for comparative analysis between genes, across different genomes and meta-analyses. Results: To address this challenge, we revamped the comparative gene expression tool qTeller to take advantage of the growing number of public RNA-Seq datasets. qTeller allows users to evaluate gene expression data in a defined genomic interval and also perform two-gene comparisons across multiple user-chosen tissues. Though previously unpublished, qTeller has been cited extensively in the scientific literature, demonstrating its importance to researchers. Our new version of qTeller now supports multiple genomes for intergenomic comparisons, and includes capabilities for both mRNA and protein abundance datasets. Other new features include support for additional data formats, modernized interface and back-end database and an optimized framework for adoption by other organisms’ databases. Availability and implementation: The source code for qTeller is open-source and available through GitHub (https:// github.com/Maize-Genetics-and-Genomics-Database/qTeller). A maize instance of qTeller is available at the Maize Genetics and Genomics database (MaizeGDB) (https://qteller.maizegdb.org/), where we have mapped over 200 unique datasets from GenBank across 27 maize genomes

    Selective Autophagy of BES1 Mediated by DSK2 Balances Plant Growth and Survival

    Get PDF
    Plants encounter a variety of stresses and must fine-tune their growth and stress-response programs to best suit their environment. BES1 functions as a master regulator in the brassinosteroid (BR) pathway that promotes plant growth. Here, we show that BES1 interacts with the ubiquitin receptor protein DSK2 and is targeted to the autophagy pathway during stress via the interaction of DSK2 with ATG8, a ubiquitin-like protein directing autophagosome formation and cargo recruitment. Additionally, DSK2 is phosphorylated by the GSK3-like kinase BIN2, a negative regulator in the BR pathway. BIN2 phosphorylation of DSK2 flanking its ATG8 interacting motifs (AIMs) promotes DSK2-ATG8 interaction, thereby targeting BES1 for degradation. Accordingly, loss-of-function dsk2 mutants accumulate BES1, have altered global gene expression profiles, and have compromised stress responses. Our results thus reveal that plants coordinate growth and stress responses by integrating BR and autophagy pathways and identify the molecular basis of this crosstalk

    Mechanical Stress Induces Biotic and Abiotic Stress Responses via a Novel cis-Element

    Get PDF
    Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min) to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR) genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE). We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation

    Quantitative proteomics reveals extensive lysine ubiquitination in the Arabidopsis root proteome and uncovers novel transcription factor stability states

    Get PDF
    Protein activity, abundance, and stability can be regulated by posttranslational modification including ubiquitination. Ubiquitination is conserved among eukaryotes and plays a central role in modulating cellular function and yet we lack comprehensive catalogs of proteins that are modified by ubiquitin in plants. In this study, we describe an antibody-based approach to enrich peptides containing the di-glycine (diGly) remnant of ubiquitin and coupled that with isobaric labeling to enable quantification, from up to 16-multiplexed samples, for plant tissues. Collectively, we identified 7,130 diGly-modified lysine residues sites arising from 3,178 proteins in Arabidopsis primary roots. These data include ubiquitin proteasome dependent ubiquitination events as well as ubiquitination events associated with auxin treatment. Gene Ontology analysis indicated that ubiquitinated proteins are associated with numerous biological processes including hormone signaling, plant defense, protein homeostasis, and root morphogenesis. We determined the ubiquitinated lysine residues that directly regulate the stability of the transcription factors CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX 1 (CIB1), CIB1 LIKE PROTEIN 2 (CIL2), and SENSITIVE TO PROTON RHIZOTOXICITY (STOP1) using site directed mutagenesis and in vivo degradation assays. These comprehensive site-level ubiquitinome profiles provide a wealth of data for future studies related to modulation of biological processes mediated by this posttranslational modification in plants

    slim shady is a novel allele of PHYTOCHROME B present in the T-DNA line SALK_015201

    Get PDF
    Auxin is a hormone that is required for hypocotyl elongation during seedling development. In response to auxin rapid changes in transcript and protein abundance occur in hypocotyls and some auxin responsive gene expression is linked to hypocotyl growth. To functionally validate proteomic studies, a reverse genetics screen was performed on mutants in auxin-regulated proteins to identify novel regulators of plant growth. This uncovered a long hypocotyl mutant, which we called slim shady, in an annotated insertion line in IMMUNOREGULATORY RNA-BINDING PROTEIN (IRR). Overexpression of the IRR gene failed to rescue the slim shady phenotype and characterization of a second T-DNA allele of IRR found that it had a wild-type hypocotyl length. The slim shady mutant has an elevated expression of numerous genes associated with the brassinosteroid-auxin-phytochrome (BAP) regulatory module compared to wild-type, including transcription factors that regulate brassinosteroid, auxin and phytochrome pathways. Additionally, slim shady seedlings fail to exhibit a strong transcriptional response to auxin. Using whole genome sequence and transcriptomics data for SALK_015201C we determined that a novel single nucleotide polymorphism in PHYTOCHROME B was responsible for the slim shady phenotype. This is predicted to convert induce a frameshift and premature stop codon at leucine 1125, within the histidine kinase-related domain of the carboxy terminus of PHYB, which is required for phytochrome signaling and function. Genetic complementation analyses with phyb-9 confirmed that slim shady is a mutant allele of PHYB. This study advances our understanding of the molecular mechanisms in seedling development, by furthering our understanding of how light signaling is linked to auxin dependent cell elongation. Furthermore, this study highlights the importance of confirming the genetic identity of research material before attributing phenotypes to known mutations sourced from T-DNA stocks

    The Chromatin Remodeler SPLAYED Regulates Specific Stress Signaling Pathways

    Get PDF
    Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD) is required for the expression of selected genes downstream of the jasmonate (JA) and ethylene (ET) signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks

    Arabidopsis bioinformatics resources: the current state, challenges, and priorities for the future

    Get PDF
    Effective research, education, and outreach efforts by the Arabidopsis thaliana community, as well as other scientific communities that depend on Arabidopsis resources, depend vitally on easily available and publicly-shared resources. These resources include reference genome sequence data and an ever-increasing number of diverse data sets and data types. TAIR (The Arabidopsis Information Resource) and Araport (originally named the Arabidopsis Information Portal) are community informatics resources that provide tools, data, and applications to the more than 30,000 researchers worldwide that use in their work either Arabidopsis as a primary system of study or data derived from Arabidopsis. Four years after Araport’s establishment, the IAIC held another workshop to evaluate the current status of Arabidopsis Informatics and chart a course for future research and development. The workshop focused on several challenges, including the need for reliable and current annotation, community-defined common standards for data and metadata, and accessible and user-friendly repositories / tools / methods for data integration and visualization. Solutions envisioned included (1) a centralized annotation authority to coalesce annotation from new groups, establish a consistent naming scheme, distribute this format regularly and frequently, and encourage and enforce its adoption. (2) Standards for data and metadata formats, which are essential, but challenging when comparing across diverse genotypes and in areas with less-established standards (e.g. phenomics, metabolomics). Community-established guidelines need to be developed. (3) A searchable, central repository for analysis and visualization tools. Improved versioning and user access would make tools more accessible. Workshop participants proposed a “one-stop shop” website, an Arabidopsis “Super-Portal” to link tools, data resources, programmatic standards, and best practice descriptions for each data type. This must have community buy-in and participation in its establishment and development to encourage adoption
    corecore