23 research outputs found

    \u3cem\u3eDistracted\u3c/em\u3e In Practice

    Get PDF
    Background - Distractions create well-known impediments to student learning. Many researchers have proposed techniques to overcome the challenges associated with distractions in the classroom.Purpose - Our study investigates instructorsā€™ experiences in using various theories and practices in a variety of STEM (Science, Technology, Engineering, & Math) and HSS (Humanities & Social Sciences) classrooms applied in a post-secondary setting. We examine how well the techniques work in practice, investigating questions such as which techniques were most employed, whether instructors perceived improvements in student engagement, and whether instructors plan to use the techniques in the future or advocate the use of the techniques to their colleagues.Method - We gathered a total of 42 survey responses from instructors across 16 departments reporting on 112 experiences using these techniques. The instructors, who were primarily junior faculty, were participants in a faculty development program over the course of one academic year that discussed the use of counter-distraction techniques proposed as a framework for improving engagement.Results - Instructors reported that student engagement improved, or stayed about the same, in all reported experiences applying these techniques to reduce distraction. Instructors perceived improved engagement in 82 of the 112 experiences. In fact, for 103 of the 112 experiences, instructors reported that they were likely to use the techniques in their classroom again.Conclusions ā€“ Our analysis of these techniques supports the claim that these practices help address the challenges of distracted students, though we would like to extend the study to more instructors, with increased variety of experiences, across more disciplines, and covering the full gamut of presented techniques

    A genetic network model of cellular responses to lithium treatment and cocaine abuse in bipolar disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lithium is an effective treatment for Bipolar Disorder (BD) and significantly reduces suicide risk, though the molecular basis of lithium's effectiveness is not well understood. We seek to improve our understanding of this effectiveness by posing hypotheses based on new experimental data as well as published data, testing these hypotheses in silico, and posing new hypotheses for validation in future studies. We initially hypothesized a gene-by-environment interaction where lithium, acting as an environmental influence, impacts signal transduction pathways leading to differential expression of genes important in the etiology of BD mania.</p> <p>Results</p> <p>Using microarray and rt-QPCR assays, we identified candidate genes that are differentially expressed with lithium treatment. We used a systems biology approach to identify interactions among these candidate genes and develop a network of genes that interact with the differentially expressed candidates. Notably, we also identified cocaine as having a potential influence on the network, consistent with the observed high rate of comorbidity for BD and cocaine abuse. The resulting network represents a novel hypothesis on how multiple genetic influences on bipolar disorder are impacted by both lithium treatment and cocaine use. Testing this network for association with BD and related phenotypes, we find that it is significantly over-represented for genes that participate in signal transduction, consistent with our hypothesized-gene-by environment interaction. In addition, it models related pharmacogenomic, psychiatric, and chemical dependence phenotypes.</p> <p>Conclusions</p> <p>We offer a network model of gene-by-environment interaction associated with lithium's effectiveness in treating BD mania, as well as the observed high rate of comorbidity of BD and cocaine abuse. We identified drug targets within this network that represent immediate candidates for therapeutic drug testing. Posing novel hypotheses for validation in future work, we prioritized SNPs near genes in the network based on functional annotation. We also developed a "concept signature" for the genes in the network and identified additional candidate genes that may influence the system because they are significantly associated with the signature.</p

    The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma

    Get PDF
    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) based on multidimensional and comprehensive characterization, including mitochondrial DNA (mtDNA) and whole genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared to other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT up-regulation in cancer distinct from previously-observed amplifications and point mutations

    Heat and mass transfer through disturbed soil: Multiscale experimental and modeling investigation

    No full text
    Landmines are one of the most prolific, human-made environmental hazards impacting the world. Although there are numerous technologies used to detect buried landmines, none enable a perfect find rate, in part, due to the heterogeneous nature of the environment in which they are buried. Variations in environmental conditions such as soil moisture and climate (e.g., temperature, diurnal fluctuations) impact detection performance. Improved understanding of the environmental conditions associated with minefield emplacement is needed to enable improvement in the algorithms used by detection technologies (e.g., infrared, ground penetrating radar), thus increasing their performance and probability of detection rates. However, there is a lack of understanding of the effect of the mine placement on the heat and mass transfer dynamics in the vicinity of the mine. More specifically, very little is known about how soil disturbance, a process that changes the soil thermal and hydraulic properties of the soil surrounding the mine, due to the placement and burial of the mine effects the soil moisture and temperature conditions in the vicinity of the mine. This is important because understanding these impacts enables increased ability to compare progressively complex models to measured aspects of interest specific to landmine emplacement conditions. The purpose of this research is to better understand the effect of soil disturbance (i.e., loosening the soil) and mixing (i.e., combining different soil types) on heat and mass transfer behavior in the vicinity of buried landmines. The aim is that this knowledge can help future research efforts to improve algorithms associated with various detection technologies. This research integrates a field experiment and numerous laboratory experiments with analytical modeling. In the first task, the thermal conductivity of mixed sands are evaluated at the small scale, providing critical knowledge of the unique behavior. Results indicate that for the test sands studied, knowledge of soil density enables identification of both saturated and dry thermal conductivity which enhances modeling of the thermal conductivity-saturation relationships. Experimental data were used to test thermal conductivity-saturation models. The analytical models varied in their ability to capture the thermal behavior, demonstrating the need for a physically based thermal conductivity-saturation model. The second task compares several approaches used to determine evaporation with several laboratory evaporation and evapotranspiration experiments in an effort to determine an appropriate method that can be applied to studies of landmine detection, specifically, disturbed soil conditions. Results demonstrate that the methods vary in their ability to capture atmospheric versus diffusion dominated evaporative stages for the test soils and boundary conditions studied. Although no one method is applicable for all boundary and initial conditions, the sensible heat balance and heat pulse method enabled the highest level of agreement between measured and modeled evaporation from bare soil experiments. Additionally, the ability of this method to isolate evaporation under evapotranspiration conditions has the potential to isolate transpiration which is significant for many agricultural applications as well as modeling efforts. The third task investigates the impact of soil disturbance and mixing on heat and mass transfer behavior under varying climate conditions at the laboratory scale. Using the methods established in Task 2, I could quantitatively understand the evaporation rates from soils under different conditions (e.g. disturbed or loose conditions compared to undisturbed or tight conditions) using both in-situ and remotely sensed temperature and soil moisture data. Results demonstrate that the disturbance and mixing cause a significant increase in evaporation compared to undisturbed soil conditions. Under disturbed conditions without mixing, the increase evaporation occurred in part to due capillary pumping from the loose soil into the tight soil. Additionally, higher evaporation rates were observed from the upstream tight region compared to the downstream tight region. Finally, the fourth task is a field scale proof of concept demonstration. The purpose of this task is to obtain a data set that includes aspects of tasks 1-3, thus testing our understanding of soil disturbance at the field scale. Experimental results demonstrate distinct behaviors in soil moisture and temperature distributions above and around buried objects that change with climate forcings (i.e., temperature and rain events)

    Beer Brewing and the Environmental Engineer: Tapping into Experiential Learning

    No full text
    Second to water, beer may perhaps be the next most desirable beverage in the lives of countless environmental engineering students. But do they fully understand or appreciate the engineering and scientific principles behind beer making? While considerable effort has been put forth in academia to teach and explain the critical environmental process of fermentation, too many students are limited to examples and explanations contained within a course textbook. The United States Military Academy is committed to providing experiential learning opportunities that reach beyond traditional classroom instruction. Our Environmental Biological Systems Course (EV396) offers an opportunity for environmental engineers to achieve a deeper, more practical understanding and appreciation for biological systems within our environment. As part of the experiential learning process, EV396 requires students to successfully brew beer in a laboratory setting to enhance their understanding of microbial metabolic processes, disinfection principles, and aseptic techniques. This paper aims to highlight and explain the linkage between the complex process of alcoholic fermentation involved in beer brewing to the environmental engineering practice. Indeed, environmental engineers often face challenges where they must design and operate biological systems and apply engineering concepts like those integral to brewing beer, including conventional wastewater management, microbial fuel cells, hazardous waste treatment and remediation, slow sand filtration, and disinfection. As part of this fermentation laboratory experience, students select the style of beer they wish to brew and exercise the engineered techniques required to brew a safe and refreshing product. Additionally, students are required to submit a detailed report demonstrating their ability to identify and evaluate key physiochemical and biochemical engineering processes. Calculations involve fermentation efficacy, specific gravity and yield, theoretical and actual ethanol content, and scaling from bench experiments to commercial production. The laboratory familiarizes students with engineering concepts, including substrates that serve as carbon and energy sources, methods for creating anaerobic reactors, and solid-liquid separation processes. Using the 5-point Likert scale, with 5 indicating greatest achievement, student laboratory performance scores are consistently greater than 3 and many are above 4, indicating effective learning, application, and understanding. Historical assessment and evaluation of how well this experiential learning laboratory supports course objectives and ABET Student Outcomes and Program Criteria are discussed in detail
    corecore