11,355 research outputs found

    Adiabatic and Non-Adiabatic Contributions to the Free Energy from the Electron-Phonon Interaction for Na, K, Al, and Pb

    Full text link
    We calculate the adiabatic contributions to the free energy due to the electron--phonon interaction at intermediate temperatures, 0kBT<ϵF0 \leqslant k_{B} T < \epsilon_{F} for the elemental metals Na, K, Al, and Pb. Using our previously published results for the nonadiabatic contributions we show that the adiabatic contribution, which is proportional to T2T^{2} at low temperatures and goes as T3T^{3} at high temperatures, dominates the nonadiabatic contribution for temperatures above a cross--over temperature, TcT_{c}, which is between 0.5 and 0.8 TmT_{m}, where TmT_{m} is the melting temperature of the metal. The nonadiabatic contribution falls as T1T^{-1} for temperatures roughly above the average phonon frequency.Comment: Updated versio

    On Zurek's derivation of the Born rule

    Full text link
    Recently, W. H. Zurek presented a novel derivation of the Born rule based on a mechanism termed environment-assisted invariance, or "envariance" [W. H. Zurek, Phys. Rev. Lett. 90(2), 120404 (2003)]. We review this approach and identify fundamental assumptions that have implicitly entered into it, emphasizing issues that any such derivation is likely to face.Comment: 8 pages; v2: minor clarifications added; v3: reference to Zurek's quant-ph/0405161 added. To appear in Foundations of Physics (Cushing Volume

    Nucleon, Δ\Delta and Ω\Omega excited states in Nf=2+1N_f=2+1 lattice QCD

    Full text link
    The energies of the excited states of the Nucleon, Δ\Delta and Ω\Omega are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, corresponding to pion masses mπm_{\pi} = 392(4), 438(3) and 521(3) MeV. We employ the variational method with a large basis of interpolating operators enabling six energies in each irreducible representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying experimental spectrum, with which we find reasonable agreement in the pattern of states. The need to include operators that couple to the expected multi-hadron states in the spectrum is clearly identified.Comment: Revised for publication. References added, Table VI expanded to add strange baryon multiparticle thresholds and multiparticle thresholds added to Figs. 4, 5 and 6. 15 pages, 6 figure

    Proton Drip-Line Calculations and the Rp-process

    Get PDF
    One-proton and two-proton separation energies are calculated for proton-rich nuclei in the region A=4175 A=41-75 . The method is based on Skyrme Hartree-Fock calculations of Coulomb displacement energies of mirror nuclei in combination with the experimental masses of the neutron-rich nuclei. The implications for the proton drip line and the astrophysical rp-process are discussed. This is done within the framework of a detailed analysis of the sensitivity of rp process calculations in type I X-ray burst models on nuclear masses. We find that the remaining mass uncertainties, in particular for some nuclei with N=ZN=Z, still lead to large uncertainties in calculations of X-ray burst light curves. Further experimental or theoretical improvements of nuclear mass data are necessary before observed X-ray burst light curves can be used to obtain quantitative constraints on ignition conditions and neutron star properties. We identify a list of nuclei for which improved mass data would be most important.Comment: 20 pages, 9 figures, 2 table

    Liquid state properties from first principles DFT calculations: Static properties

    Full text link
    In order to test the Vibration-Transit (V-T) theory of liquid dynamics, ab initio density functional theory (DFT) calculations of thermodynamic properties of Na and Cu are performed and compared with experimental data. The calculations are done for the crystal at T = 0 and T_m, and for the liquid at T_m. The key theoretical quantities for crystal and liquid are the structural potential and the dynamical matrix, both as function of volume. The theoretical equations are presented, as well as details of the DFT computations. The properties compared with experiment are the equilibrium volume, the isothermal bulk modulus, the internal energy and the entropy. The agreement of theory with experiment is uniformly good. Our primary conclusion is that the application of DFT to V-T theory is feasible, and the resulting liquid calculations achieve the same level of accuracy as does ab initio lattice dynamics for crystals. Moreover, given the well established reliability of DFT, the present results provide a significant confirmation of V-T theory itself.Comment: 9 pages, 3 figures, 5 tables, edited to more closely match published versio

    KECK HIRES Spectroscopy of APM 08279+5255

    Get PDF
    With an optical R-band magnitude of 15.2, the recently discovered z=3.911 BAL quasar APM 08279+5255 is an exceptionally bright high redshift source. Its brightness has allowed us to acquire a high signal-to-noise ratio (~100), high resolution (~6 km/s) spectrum using the HIRES echelle spectrograph on the 10-m Keck I telescope. Given the quality of the data, these observations provide an unprecedented view of associated and intervening absorption systems. Here we announce the availability of this spectrum to the general astronomical community and present a brief analysis of some of its main features.Comment: 21 pages including 5 figures. Accepted for publication by PAS

    Dynamics of monatomic liquids

    Full text link
    We present a theory of the dynamics of monatomic liquids built on two basic ideas: (1) The potential surface of the liquid contains three classes of intersecting nearly-harmonic valleys, one of which (the ``random'' class) vastly outnumbers the others and all whose members have the same depth and normal mode spectrum; and (2) the motion of particles in the liquid can be decomposed into oscillations in a single many-body valley, and nearly instantaneous inter-valley transitions called transits. We review the thermodynamic data which led to the theory, and we discuss the results of molecular dynamics (MD) simulations of sodium and Lennard-Jones argon which support the theory in more detail. Then we apply the theory to problems in equilibrium and nonequilibrium statistical mechanics, and we compare the results to experimental data and MD simulations. We also discuss our work in comparison with the QNM and INM research programs and suggest directions for future research.Comment: 53 pages, 16 figures. Differs from published version in using American English spelling and grammar (published version uses British English

    Estimating the nuclear level density with the Monte Carlo shell model

    Get PDF
    A method for making realistic estimates of the density of levels in even-even nuclei is presented making use of the Monte Carlo shell model (MCSM). The procedure follows three basic steps: (1) computation of the thermal energy with the MCSM, (2) evaluation of the partition function by integrating the thermal energy, and (3) evaluating the level density by performing the inverse Laplace transform of the partition function using Maximum Entropy reconstruction techniques. It is found that results obtained with schematic interactions, which do not have a sign problem in the MCSM, compare well with realistic shell-model interactions provided an important isospin dependence is accounted for.Comment: 14 pages, 3 postscript figures. Latex with RevTex. Submitted as a rapid communication to Phys. Rev.

    Extrapolation of neutron-rich isotope cross-sections from projectile fragmentation

    Full text link
    Using the measured fragmentation cross sections produced from the 48Ca and 64Ni beams at 140 MeV per nucleon on 9Be and 181Ta targets, we find that the cross sections of unmeasured neutron rich nuclei can be extrapolated using a systematic trend involving the average binding energy. The extrapolated cross-sections will be very useful in planning experiments with neutron rich isotopes produced from projectile fragmentation. The proposed method is general and could be applied to other fragmentation systems including those used in other radioactive ion beam facilities.Comment: accepted for publication in Europhysics Letter
    corecore