833 research outputs found

    No, You Really Don\u27t Have to Pay: Protecting Tax Havens

    Full text link

    The Phosphate/Amide I ratio is Reduced by in vitro Glycation and may Correlate with Fracture Toughness

    Get PDF
    poster abstractIntroduction: Advanced glycation end products (AGEs) form when reducing sugars react with proteins. In bone AGEs can form in type I collagen which results in non-enzymatically derived crosslinks. While enzymatic crosslinks play an important role in strengthening the collagen matrix, non-enzymatic crosslinks are believed to reduce toughness. AGEs accumulate in bone over time and play an important role in reducing bone quality particularly in aging and diabetic patients who accumulate AGEs more rapidly due to increases in circulating glucose. Non-enzymatic glycation of bone can be modeled experimentally by soaking samples in a sugar solution which allows decades worth of AGE accumulation to occur in a short time. AGEs are primarily measured using fluorescence measurements or high performance liquid chromatography (HPLC). Spectroscopic techniques have been developed to determine enzymatic crosslinking maturity by detecting perturbations in collagen structure in the Amide I region and it may be possible to detect similar changes caused by AGEs. We hypothesized that the formation of AGEs in collagen would perturb the Amide I band of Raman spectra causing changes to the mineral to matrix ratio (MMR) which would correlate with AGE-induced mechanical changes in an in vitro ribose soaking experiment. If changes due to non-enzymatic glycation can be detected in the Amide I band, Raman spectroscopic techniques could be developed to assess the presence of AGEs in a non-destructive and widely available manner. Methods: Five femurs were harvested from male hounds from a previous IACUC approved study. From the mid-diaphysis, six beams ~1.4 x 4 x 24 mm were sectioned from each bone. Two beams from each sample were randomly assigned to one of three groups. One of those beams was sanded to 1.4 x 2 x 20 mm for fracture toughness testing while the other was used for Raman spectroscopy and Reference Point Indentation (RPI). All beams were soaked for 14 consecutive days at 37°C in solutions containing 1% Pen-Strep, 1.3mM CaCl2 and either no ribose (Control), 0.2M ribose (Low), or 0.6M ribose (High) in Hank’s Balanced Salt Solution with solutions changed every other day. After soaking, a notch was started in the sanded beam with a diamond wire sectioning saw and then sharpened by hand with a razor using a 1μm diamond suspension. Notched beams were submerged in fluid and loaded in displacement control to 0.03mm, unloaded to 0.015mm, held for 10s, then cycled until failure with a 0.05mm load, a 0.02 unload, and a 10s hold. J-R curves were calculated using ASTM E1820-5a to obtain initiation stress intensity factor (KIc) and maximum stress intensity factor (Kmax). Raman spectra were acquired at five points along the length of the second beam using a LabRAM HR 800 with a 660nm laser focused to a spot size of ~10μm. After baseline correction, OriginPro 8.6 was used to calculate MMR as the area of the PO43- ν1 peak over the area of the Amide I band. Following Raman spectroscopy, co-localized RPI was performed at each Raman location using 10 cycles of a 5N force at 2Hz. One-way ANOVA tested mean differences between samples. Pearson product-moment correlation coefficients were calculated between MMR and parameters from RPI and fracture toughness. All values are presented as mean ± standard deviation and all statistics were carried out using SAS 9.4. Results: Raman spectroscopy and RPI were not performed on one sample from the Low group. Data were not available for one Control sample and Kmax was excluded for one High sample. Neither KIc nor Kmax were significantly different between groups (Control: 6.59 ± 0.42, 13.55 ± 1.38 MPa√m; Low: 6.19 ± 1.98, 14.80 ± 2.00 MPa√m; High: 6.84 ± 1.18, 15.25 ± 2.35 MPa√m). MMR was significantly different between groups (p=0.039). Tukey HSD post-hoc tests revealed that Control (2.45 ± 0.37) was significantly greater than High (1.85 ± 0.20) while Low was intermediate (2.18 ± 0.37) but not significantly different. No significant differences were observed with RPI. A weak positive correlation was observed between average creep indentation increase (CID) and MMR (R2=0.079, p=0.0185) but no other RPI measurements were correlated with MMR. Two influential points, determined by a Cook’s distance > 4/n, were excluded from the regression KIc to MMR. A mild trend was observed between KIc and MMR but the fit did not reach significance (R2=0.334, p=0.0628). Discussion: Because samples were all from the same 5 animals and randomized into groups, any differences between groups arose from the soaking in solutions of different concentrations of ribose. AGEs were not measured to confirm the expected dose-dependent increase, but noticeable browning occurred in the High group which was less pronounced in the Low group and not present in Control. The soaking protocol and ribose concentrations were chosen based on previous literature showing increases in AGEs. Therefore, we are confident changes noted here are due to the presence of AGEs and the resulting non-enzymatic crosslinks. Because soaking was performed in appropriately buffered solutions, decreased MMR in the High group relative to Control are expected to occur due to glycation of collagen rather than changes in mineral content. We suspect that perturbations in collagen structure due to the presence of non-enzymatic crosslinks are causing the differences in the area of the Amide I band between groups. Given the changes in MMR with glycation, future studies investigating models where AGEs are likely present should be cautious in their interpretation of MMR if it is not supported by other measures of mineralization. The lack of significant differences between groups for RPI and fracture toughness parameters may be due to the small sample size (n=4-5 per group) and biological variations associated with mechanical techniques. However, the sample size was adequate to assess correlations between Raman and RPI due to the co-localized measurements in each sample (n=70). The positive correlation between CID and MMR was expected given AGEs have been shown to reduce creep behavior and since MMR is decreased by AGEs. However, the correlation is weak which is likely due to the overall small non-significant effect in CID compared to its variation. The correlation between MMR and initiation toughness similarly suggests that as AGEs reduce MMR, KIc decreases which is known to occur with glycation. While the correlation did not reach significance (p=0.063), the trend is compelling given the small sample size (n=11) and the use of Raman data from an adjacent beam from the same sample rather than the beam used to measure KIc. In conclusion, MMR changes in response to in vitro glycation and these changes are correlated to CID and possibly to KIc. Deconvolution of the Amide I region into sub-peaks to determine which peak(s) are altered in the presence of AGEs is an important next step to developing a spectroscopic technique that can assess the presence of AGEs and is recommended in future work. Significance: Correlations were performed between Raman spectroscopy, Reference Point Indentation, and fracture toughness measurements to evaluate the ability of perturbations in the Amide I band to explain glycation-induced changes in tissue mechanics. Non-enzymatic glycation is an important determinant of bone quality especially in aging and diabetic patients and understanding the specific roles composition and microscale mechanics play in determining how non-enzymatic glycation affects fracture toughness may lead to new therapeutic targets

    Incorporating tissue anisotropy and heterogeneity in finite element models of trabecular bone altered predicted local stress distributions

    Get PDF
    Trabecular bone is composed of organized mineralized collagen fibrils, which results in heterogeneous and anisotropic mechanical properties at the tissue level. Recently, biomechanical models computing stresses and strains in trabecular bone have indicated a significant effect of tissue heterogeneity on predicted stresses and strains. However, the effect of the tissue-level mechanical anisotropy on the trabecular bone biomechanical response is unknown. Here, a computational method was established to automatically impose physiologically relevant orientation inherent in trabecular bone tissue on a trabecular bone microscale finite element model. Spatially varying tissue-level anisotropic elastic properties were then applied according to the bone mineral density and the local tissue orientation. The model was used to test the hypothesis that anisotropy in both homogeneous and heterogeneous models alters the predicted distribution of stress invariants. Linear elastic finite element computations were performed on a 3 mm cube model isolated from a microcomputed tomography scan of human trabecular bone from the distal femur. Hydrostatic stress and von Mises equivalent stress were recorded at every element, and the distributions of these values were analyzed. Anisotropy reduced the range of hydrostatic stress in both tension and compression more strongly than the associated increase in von Mises equivalent stress. The effect of anisotropy was independent of the spatial redistribution high compressive stresses due to tissue elastic heterogeneity. Tissue anisotropy and heterogeneity are likely important mechanisms to protect bone from failure and should be included for stress analyses in trabecular bone

    Treadmill Exercise Improves Fracture Toughness and Indentation Modulus without Altering the Nanoscale Morphology of Collagen in Mice.

    Get PDF
    The specifics of how the nanoscale properties of collagen (e.g., the crosslinking profile) affect the mechanical integrity of bone at larger length scales is poorly understood despite growing evidence that collagen’s nanoscale properties are altered with disease. Additionally, mass independent increases in postyield displacement due to exercise suggest loading-induced improvements in bone quality associated with collagen. To test whether disease-induced reductions in bone quality driven by alterations in collagen can be rescued or prevented via exercise-mediated changes to collagen’s nanoscale morphology and mechanical properties, the effects of treadmill exercise and β-aminopropionitrile treatment were investigated. Eight week old female C57BL/6 mice were given a daily subcutaneous injection of either 164 mg/kg β-aminopropionitrile or phosphate buffered saline while experiencing either normal cage activity or 30 min of treadmill exercise for 21 consecutive days. Despite differences in D-spacing distribution (P = 0.003) and increased cortical area (tibial: P = 0.005 and femoral: P = 0.015) due to β-aminopropionitrile treatment, an overt mechanical disease state was not achieved as there were no differences in fracture toughness or 4 point bending due to β-aminopropionitrile treatment. While exercise did not alter (P = 0.058) the D-spacing distribution of collagen or prevent (P < 0.001) the β-aminopropionitrile-induced changes present in the unexercised animals, there were differential effects in the distribution of the reduced elastic modulus due to exercise between control and β-aminopropionitrile-treated animals (P < 0.001). Fracture toughness was increased (P = 0.043) as a main effect of exercise, but no significant differences due to exercise were observed using 4 point bending. Future studies should examine the potential for sex specific differences in the dose of β-aminopropionitrile required to induce mechanical effects in mice and the contributions of other nanoscale aspects of bone (e.g., the mineral–collagen interface) to elucidate the mechanism for the exercise-based improvements in fracture toughness observed here and the increased postyield deformation observed in other studies

    Even With Rehydration, Preservation in Ethanol Influences the Mechanical Properties of Bone and How Bone Responds to Experimental Manipulation

    Get PDF
    Typically, bones are harvested at the time of animal euthanasia and stored until mechanical testing. However, storage methods are not standardized, and differential effects on mechanical properties are possible between methods. The goal of this study was to investigate the effects that two common preservation methods (freezing wrapped in saline-soaked gauze and refrigerating ethanol fixed samples) have on bone mechanical properties in the context of an in vitro ribosylation treatment designed to modify mechanical integrity. It was hypothesized that there would be an interactive effect between ribose treatment and preservation method. Tibiae from twenty five 11week old female C57BL/6 mice were separated into 2 preservation groups. Micro-CT scans of contralateral pairs assessed differences in geometry prior to storage. After 7weeks of storage, bones in each pair of tibiae were soaked in a solution containing either 0M or 0.6M ribose for 1week prior to 4 point bending tests. There were no differences in any cortical geometric parameters between contralateral tibiae. There was a significant main effect of ethanol fixation on displacement to yield (-16.3%), stiffness (+24.5%), strain to yield (-13.9%), and elastic modulus (+18.5%) relative to frozen specimens. There was a significant main effect of ribose treatment for yield force (+13.9%), ultimate force (+9.2%), work to yield (+22.2%), yield stress (+14.1%), and resilience (+21.9%) relative to control-soaked bones. Postyield displacement, total displacement, postyield work, total work, total strain, and toughness were analyzed separately within each preservation method due to significant interactions. For samples stored frozen, all six properties were lower in the ribose-soaked group (49%-68%) while no significant effects of ribose were observed in ethanol fixed bones. Storage in ethanol likely caused changes to the collagen matrix which prevented or masked the embrittling effects of ribosylation that were seen in samples stored frozen wrapped in saline-soaked gauze. These data illustrate the clear importance of maintaining hydration if the eventual goal is to use bones for mechanical assessments and further show that storage in ethanol can alter potential to detect effects of experimental manipulation (in this case ribosylation)

    The North American Free Trade Agreemet and United States Employment.

    Get PDF
    The North American Free Trade Agreement (NAFTA) will create new opportunities for United States firms and workers while simultaneously protecting United States workers over a 15-year timeframe. The benefits of NAFTA include eliminating conditions that currently encourage or require United States firms to invest south of the border, establishing free trade in services, and eliminating non-tariff barriers which impede United States merchandise exports to Mexico. Furthermore, NAFTA would provide an improved and expanded regional trade and investment base resulting in a boost to the global competitiveness of US products. NAFTA would also increase trade liberalization with Mexico and maintain Mexico as a premier growth market for US exports and maintain the jobs those exports support. As NAFTA’s provisions are introduced, the provisions will be slowly phased in to protect US industries and workers. This will include tariff phase-outs, the NAFTA rules of origin, and a government to government dispute settlement procedure. Critics of NAFTA argue United States firms will move to Mexico due to weak labor and environmental standards. This belief, however, is a misconception. Standards in Mexico do not differ significantly from those in the United States and cooperative bilateral efforts on labor and environmental matters are occurring simultaneously to the NAFTA negotiations. The elimination of Mexico’s tariff and non-tariff barriers, Mexico’s local content, and export performance requirements, will eliminate motivation for United States manufacturers to move to Mexico. Nonetheless, international trade is necessary for the US economy and the US should engage in continental free trade through NAFTA

    KECK HIRES Spectroscopy of APM 08279+5255

    Get PDF
    With an optical R-band magnitude of 15.2, the recently discovered z=3.911 BAL quasar APM 08279+5255 is an exceptionally bright high redshift source. Its brightness has allowed us to acquire a high signal-to-noise ratio (~100), high resolution (~6 km/s) spectrum using the HIRES echelle spectrograph on the 10-m Keck I telescope. Given the quality of the data, these observations provide an unprecedented view of associated and intervening absorption systems. Here we announce the availability of this spectrum to the general astronomical community and present a brief analysis of some of its main features.Comment: 21 pages including 5 figures. Accepted for publication by PAS
    • …
    corecore