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Abstract

Real-time dynamic substructuring is an experimental technique for testing the dy-
namic behaviour of complex structures. It involves creating a hybrid model of
the entire structure by combining experimental test piece(s) - the substructure(s)
- with a set of numerical model(s) describing the remainder of the system. By
employing real-time control techniques to "glue" the numerical and experimental
parts together, we create a virtual testing environment that if performed correctly
will emulate the dynamic behaviour of the complete structure exactly.

In this thesis, we focus on the experimental side of substructuring, specifically
concentrating on the influence of delays within the substructured system. These
are introduced by the inherent dynamics of the actuation device(s) involved -
it is impossible for any controlled transfer system(s) (as they are known) to re-
act instantaneously to a state change in demand. We study the stability of the
substructured system in direct relation to the magnitude of this delay error and
present two methods for identifying the critical limit of stability; firstly, using a delay
differential equation approach by approximating the transfer system to a delayed
unit response of the numerical model, and secondly, by observing the magnitude
of permissible phase margin of the substructured system. We discuss two different
formulations of a compensation scheme; one achieving adaptive forward prediction
using polynomial extrapolation and the second achieving lag compensation via the
inversion of an identified model of the transfer system. We then extend this control
strategy to include the concept of robustness which leads us to develop a four stage
testing methodology that can be applied to any substructured system to help ensure
successful testing.

We build on these fundamental concepts to demonstrate the "proof of concept"
of real-time dynamic substructuring for an industrial aerospace application - a
helicopter lag damper connected to numerical model of an individual blade excited
by flight test data.
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Chapter 1

Advanced dynamic testing of

structures

SUMMARY: This chapter provides a background to the work pre-

sented in this thesis - a comprehensive guide to advanced dynamic

structural testing methodologies. We review the main types of labo-

ratory testing of structures under dynamic loads which has led to the

development of real-time dynamic substructuring.

1.1 Introduction

The dynamical behaviour of structures has become of great importance to us as

a society. We live, work, operate and in the modern world, completely rely on

the engineering world around us. We have come to expect many things, including

functionality, performance, reliability, aesthetically pleasing designs but most of all,

for it to be safe. It is commonly taught to engineering students that "anyone"

can make a structure to stand up, but it is the engineer who makes it just stand

up. In order to do this, we must have a good understanding of all the loading

effects, static and dynamic, that the system is likely to face through its lifetime.

The term dynamic is defined simply as time varying, thus, a dynamic load is any
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CHAPTER 1. ADVANCED DYNAMIC TESTING OF STRUCTURES

load for which its magnitude, direction and/or position varies with time. Large

structures commonly found in the civil engineering field can experience a whole

range of different types of dynamic loading, such as seismic, wind, wave, explosions

and impact, human and machine induced vibration, traffic and moving loads [3].

Our understanding of how a structure will respond to such phenomena will effect

our ability to produce the most efficient, and therefore "best", engineering design.

There is much literature that has been published on the theoretical analysis of the

dynamics of structures, see [4-8]. This thesis is concerned with a very specific type of

structural testing, a technique known as real-time dynamic substructuring. This field

started with the emphasis (clearly) on the simulation of structures under earthquake

effects. Predicting the location and intensity of future earthquakes is unfortunately

not yet possible. Recent earthquakes such as Kobe (1995) and Umbria (1997) have

shown that effective prevention of structural failure should be based mainly on

adequate design, construction and maintenance of new civil engineering structures,

and retrofitting of existing structures lacking appropriate seismic resistance charac-

teristics. However, the assessment of the seismic vulnerability of structures is a very

complex issue due to the non-deterministic characteristics of the seismic motion and

the need for an accurate prediction of the structural responses for magnitudes beyond

linear behaviour. Satisfactory numerical modeling (typically, the finite element

method) depends largely upon the availability of a complete characterization of

material properties and appropriate mathematical models able to represent all of

the structural components. Chopra [9] provides an insight into dynamical structures

with direct application to this field of earthquake engineering. The motivation for

the work presented in this thesis is on broadening the application of the real-time

dynamic substructuring technique to also being viewed as an advanced form of

component testing for mechanical and aerospace systems.

This chapter provides a comparative overview of the current laboratory testing

techniques for advanced dynamic structural testing and therefore a background to

the work which will be presented in the remainder of the thesis. A recent review of
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these technologies is also given by Williams and Blakeborough [10].

1.2 Quasi-static testing

Testing techniques are classified into the quasi-static or the dynamic category de-

pending on the applied loading rate. For quasi-static testing, a typical test is

conducted between tens of minutes and one day. A test specimen is subject to slowly

changing pre-prescribed forces or deformations by means of hydraulic actuators.

Due to the slow speeds involved, very high load capacity actuators can be utilized

such that large structures can be tested. Tests can be conducted either as a

monotonic loading test (more commonly known as the pushover test) or in a cyclic

loading manner. The pushover test is conducted for evaluating maximum strength,

maximum displacement, unloading and reloading paths whereas the cyclic loading

tests are most commonly used to show the structures's basic hysteretic behaviour

[11, 12]. A typical application of quasi-static testing is given by Mehrabi et al. [13]

Who perform an experimental evaluation of a masonry-infilled reinforced concrete

(RC) frame.

Due to the slow loading rate, such that the creep effect and slow bond failure effect

become predominant, the internal forces within the structure are not considered in

this method. Therefore, the effect of energy dissipation by the dynamic interaction

between the structural elements cannot be simulated with sufficient accuracy and

thus, the quasi-static experimental techniques cannot capture the dynamic nature

of earthquakes. A comparison of the quasi-static and dynamic testing techniques is

given by Calvi and Kingsley [14].

1.3 Shaking table testing method

Shaking tables are one of the most important and well established tools available to

civil engineers in order to study the effects of seismic motion on structures. They

PAGE 3



CHAPTER 1. ADVANCED DYNAMIC TESTING OF STRUCTURES

Figure 1.1: BLADE shaking table, EQUALS Lab at the University of Bristol.

were first introduced in the 1940s and became widespread by the 1960s. They consist

of a large, stiff platform which is driven by a set of servo-hydraulic actuators (the

first tables used profiled cams but this was quickly superseded). The test specimen

(also known as the payload) is placed on top of the platform and excited according

to a predetermined displacement or acceleration control signal. Figure 1.1 shows

the new BLADEI shaking table situated in the Earthquake Engineering (EQUALS)'

Laboratory at the University of Bristol. There are four actuators which provide

longitudinal and lateral motion (conventionally named, Xl, X2, Y1 and Y2) and four

which provide vertical motion (conventionally named, Zl, Z2, Z3 and Z4)' This

results in a six Degree-of-Freedom (DOF) system (three-axis translation, roll, pitch

and yaw). The actuators outnumber the number of degrees of freedom so that the

system is over-constrained, thus only certain configurations of the actuators are

possible which are prescribed using a kinematic model.

Shaking tables work by reproducing the inertial forces experienced during an earth-

quake on the structure in a real-time dynamic test (a description of real-time and

what this entails is given in § 2.4.4). Essentially, this means that if the control of

1Bristol Laboratory for Advanced Dynamics Engineering.
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1.3. SHAKING TABLE TESTING METHOD

the table can be done accurately all the damping and inertial characteristics of the

payload are retained. The control reference to the table (typically an acceleration) is

determined by the specific earthquake dynamics and also by the scale and character-

istics of the payload. It may be necessary (in fact, likely) to scale down a structure

to fit within the table's operational capacity, this introduces scaling effects which

are discussed in § 1.3.1.

There are many existing shaking table facilities around the world; these can be

classified by their absolute size and load capacity and their dynamic rating. The

BLADE shaking table for example (Figure 1.1) is relatively small in size, 3m x 3m

platform (cast aluminium inverted pyramid weighing 6.5 t), with eight 70kN capacity

actuators. However, the actuators have an extremely high dynamic rating with a top

speed of 3m/s and thus can reproduce the most demanding of earthquake signals.

Shaking tables are not only constrained by capacity but also by cost; construction,

operation and maintenance. Some extremely large and expensive facilities have been

constructed recently in Japan in an attempt to avoid the problems associated with

scaling of the nonlinear dynamic responses. The largest of which (and currently the

largest in the world) is in "Miki City" situated in Hyogo Prefecture to the north of

the city of Kobe and has a capacity of 1,200 t (equivalent to a four-story reinforced

concrete building) and is known as E-Defense for short. The extremely high capacity

is achieved at the expense of reducing the number of controlled degrees of freedom

to only a three-dimensional test, see Ogawa et al. [15]. However, given its size of

15m x 20m, experimental structures can be tested at full scale. The shaking table

has five longitudinal actuators, five lateral, and fourteen vertically. It uses servo-

hYdraulic valves which are able to provide oil flow rates of up to 15,000l/min. The

first experiment was carried out in January 2005 and reproduced the earthquake that

Was recorded at the Kobe Marine Observatory at the time of the Great Hanshin-

Awaji Earthquake on a full-scale two-story wooden house.

In control terms, the shaking table can be seen as the "plant" - a physical system

which produces an output to a given input. Under closed-loop control, the specific
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control algorithm attempts to supply the right input to the table in order to achieve

a desired output. The difference between the reference and the output is known

as the synchronisation error. The main goal of the controller is to minimize the

magnitude of this error in order to obtain a faithful representation of the original

earthquake.

Two main control approaches can be implemented: the plant can be considered

as a Multi-Input-Multi-Output (MIMO) system or as a set of Single-Input-Single-

Output (SISO) systems. The first is quite complex, since it considers the table

as a whole and has to take the interactions between actuators into account. The

second is more simple, as it controls each actuator in isolation. If each actuator

follows its own demand exactly, the table will achieve the target reference. However,

the influence of noise, computational and transducer errors as well as the dynamic

interactions between the table and the payload prevent the plant from reaching the

target accurately. This is due to the fact that in shaking table control the dynamics

of the system are partly determined by the characteristics and regime of the payload,

which is usually of a larger mass than the table itself. The payloads regime often

enters into the plastic region and its characteristics are subjected to sudden changes,

especially if a collapse occurs during the experiment. During the early 1990s a Pan-

European network of shaking table facilities, the ECOEST consortium, was created

([16]). A programme of tests were carried out to compare the performance of the

shaking tables; a strong interaction between the payload and the shaking table

was discovered and is summarized in Crewe [17]. This interaction can be reduced

after a process of fine tuning the control parameters of the table and/or iteratively

correcting the input signal (matching), but this is specific to each shaking table and

to each specimen and thus is limited.

Many of early shaking tables were fitted only with linear controllers, usually imple-

mented in analog form. A linear controller (also known as a fixed-gain controller)

is easy to implement, it is stable as long as certain conditions are met and the

technology is well known. Linear controllers can also be tuned with a high degree of
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precision when the plant has well known parameters and behaves linearly. However,

these type of controllers are not well-suited for nonlinear regimes and cannot respond

to unexpected plant dynamics or if the plant has been badly estimated. One possible

way of overcoming this limitation is to use an adaptive controller; one which the gains

are updated at every sampling interval to account for dynamic changes in the system

being controlled. Recent attempts have been based around using model reference

type controllers - of the form taken by the Model Reference Adaptive Control

(MRAC) algorithm of Landau [18J. In this scheme, a linear controller is tuned

according to the parameters of the plant. The parameters are estimated on-line,

comparing the output of the plant to the output of a linear reference model. Both

the plant and the linear reference model use the same reference signal. Specifically

this has been done at the University of Bristol using the Minimal Control Synthesis

(MCS) algorithm [19, 20J. It is well-suited to this application since it requires

no prior identification of the dynamics of the system being controlled and can be

retrofitted around existing controllers to achieve MIMO control, as described in

Staten and Gomez [21J and Gomez [22J.

1.3.1 Scale model testing

The shaking table test has the advantage of retaining the true dynamic characteris-

tics of the earthquake, however it suffers from the fact that it can (usually) only be

performed on reduced-scale models of the original structure [23J. Making a reduced

scale model which has the exact dynamic structural behaviour representative of the

real-scale structure is unfortunately not possible. Dynamic similitude is a technique

Used to express the similarity of forces between the structure and its corresponding

model under excitation, and can be conveniently expressed using two parameters.

The Cauchy number is the ratio between the dynamic inertia forces Fi and the

elastic restoring forces Fe,

(1.1 )
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where p is density, v is velocity and E is Youngs modulus. The Froude number is

the ratio between the inertia and gravity forces,

Pi v2-=-,r; L9
(1.2)

where L is length and 9 is the acceleration due to gravity. In most cases it is desirable

that both the Cauchy and Froude numbers of the model match the values for the

structure [16]. The most important consequences of this matching are that the

mass-scale factor should be the inverse of the length-scale factor and that the time-

scale factor should be the square root of the length-scale factor. Thus, if a structure

tested is a scaled model, with its size scaled down to A-1 CA > 1.0), a ballast must be

added to the model, such that its specific mass is increased by A, and the time-scale

must be reduced by A! to reproduce the strain-rate that would be induced in the

original structure. However, by adding such a ballast, the axial stress imposed to the

model becomes A times the axial stress for the original structure (axial force is one

of the primary factors that lead the structure to failure) and by shortening the time-

scale, the resultant increase in the frequency content of the demand signal increases

the demands on the actuators. This demonstrates the difficultly in maintaining

the structural properties in a reduced-scale model perfectly. The lack of confidence

provided the motivation for the development of the large Japanese shaking tables

described earlier.

However, the problem becomes more complex when we consider the fabrication of

the model itself. In steel structures for example, the thermal energy inputed by

welding is much larger per unit volume in a reduced-scale model than it would be

in the original structure, which tends to significantly alter the stress distribution

as well as material properties of the reduced-scale model. Additionally, the size of

the weld itself is much larger increasing the stiffness of the model. As reported in

Nakashima [24], when using reduced-scale models for scale-sensitive problems, such

as connections in steel structures or bond and anchorage in reinforced concrete, at

most the global behaviour of the structure (such as the force-deflection relationship

before serious deterioration in resistance) can be simulated, the local behaviour
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(such as local buckling, crack propagation and bond deterioration) is beyond the

scope. There is no question about the importance of local behaviour in assessing

the seismic performance of structures, in many cases structural damage is triggered

by local defects such as connection failure or bond deterioration. This leads to the

conclusion that if information on local behaviour of the structure is required, the

test specimen must be fabricated at full-scale. If this is beyond the capacity of the

shaking table another testing technique is required, such as the effective force testing

method (§ 1.5), the pseudo-dynamic testing method (§ 1.6) or the hybrid testing

method (§ 1.7).

1.4 Dynamics of a structure subjected to an earthquake

We use here the simple example of a planar structure, as can be seen in Figure 1.2,

subjected to an earthquake where all the degrees of freedom N are in the same

Rigid-body
motion

Xaj

'/

Figure 1.2: Planar structure subject to ground excitation xg; Relative motion of

ach mass mj is given by Xj and the absolute motion by Xaj, where j = 1, ... ,N.
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direction as the ground motion. From Chopra [9], the equations of motion for such

a structure subjected to a ground displacement of Xg can be written as

Mi'a +Cx +K» = 0, (1.3)

where, M, C, K are the matrices of masses, damping and stiffness respectively (and

may have a diagonal structure), x is the vector of the relative displacements and Xa

is the vector of the absolute displacements given by

(1.4)

where I is a unity vector of order N. Substituting Eq. (1.4) into Eq, (1.3) gives

Mx + ex + Kx = -MI;i;"g. (1.5)

Eq. (1.5) implies that the structure can be analysed as a structure that is supported

on a fixed foundation and subjected to an external force vector, such that F =

-MIi~. Additionally, if the restoring forces, represented by the term Kx are re-

placed by a more general restoring force vector R (which can include nonlinearities),

the equations of motion become

Mx+Cx+R=F. (1.6)

Eq. (1.6) can now be used as the basic equation of motion for the different testing

methods described in the remainder of this chapter.

1.5 Effective force testing method

The concept of the Effective Force Test (EFT) method is that the response of a

system to a given ground motion may be replicated by applying the external force

vector F (known in this case as the effective force vector Fell) of Eq, (1.6) to the test

structure. This is achieved by operating actuators under force control influencing the

structure in real-time. Although this is not a new concept [25], the implementation

of EFT is still relatively new [26, 27]. As noted in the development of Eq. (1.6),
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Figure 1.3: Effective force testing: (a) structure and (b) laboratory test set-up.

the effective force at each degree of freedom is equal to the product of the mass and

ground acceleration in the direction of the degree of freedom. The concept of the

EFT method is illustrated in Figure 1.3 for a multi DOF test structure. Actuators

reacting off of a reaction wall are utilized to apply the effective load to the test

structure.

The key advantage of the EFT method is that the effective forces depend on only

the ground acceleration record and the structural mass, and are independent of

any nonlinear behaviour of the structure such as stiffness and damping. They can

therefore be calculated in advance of the test, and the need for online computations

during testing is minimal.

The challenge of using the EFT method is to achieve accurate force representation on

the test structure. To simulate the real-time effects of an earthquake on a structure,

dynamic actuators and a high quality servo-hydraulic control system are needed to

accurat ly apply the effective forces. Dyke et al. [28] found that there is an intrinsic

property of hydraulic actuators, called natural velocity feedback, which restricts

the ability of the actuators to apply an accurate force when the test structure is

vibrating near one of its natural frequencies. Dimig et al. [29] developed a method
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called natural velocity feedback negation to correct for the phenomenon associated

with natural velocity feedback. This method is based on classical control theory and

was successfully demonstrated for single DOF systems. Zhao et al. [30] extended

this technique to encompass nonlinear compensation for nonlinear real-time dynamic

testing.

The main disadvantage of the EFT method is that the complete seismic mass of the

prototype structure must be included in the test structure. This may be difficult to

achieve in all but the largest laboratories. Additionally, only a lumped mass system

can be tested.

1.6 Pseudo-dynamic testing method

The pseudo-dynamic (PsD) test method (also known as online testing) is an exper-

imental technique for simulating the response of structures and structural compo-

nents to earthquake excitation. Unlike conventional direct integration algorithms,

such as quasi-static testing § 1.2, in PsD testing the restoring forces are not modelled

but measured directly from the test specimen.

According to Nakashima [24], the original concept was proposed by Hakuno et al.

[31] in the late 1960s and was not established in its current form, combined with

quasi-static loading test, until Takanashi et al. [32] in 1975. The technique continued

to be developed under the US-Japan Cooperative Earthquake Program in the 1980s

[33-36]. Summaries of these efforts are provided in Takanashi and Nakashima [37]

(1987) (for the Japanese activities), Mahin et al. [25] (1989) (for US activities) and

Shing et al. [38] (1996) (for combined Japanese and US efforts). A number of specific

challenges arose through these developments including problems of experimental

errors leading to growth of erroneous responses, problems of scaling, problems with

rate-of-loading effects and problems associated with integration algorithms which

did not ensure unconditional stability. Many studies were carried out to overcome

these problems which broadened its development and application into Europe and
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Asia [39-45]. Although it became the typical situation in PsD to control to a

displacement, research has been carried out in mixed-state control to reduce the error

propagation at low amplitudes by Pan et al. [46] who used a mixed displacement-

force algorithm.

One of the critical prerequisites for conducting the PsD test is the effect of the

loading rate on the restoring force. Depending on the rate the test structure is

being loaded, PsD testing can be divided into two categories, either conventional

or real-time. Conventional PsD tests are performed with expanded time scales [25],

originally approximately one hundred times the actual time scale, which allowed

the test structure to be inspected between time intervals in order to ensure the

integrity of the test specimen. However, fast PsD testing is now more common

(between 10 to 100 % of real-time). Structures with load-rate sensitive components

are not likely able to have their response to seismic loading accurately captured

by the conventional PsD test method as the inertia components of the dynamic

characteristic are lost, and therefore should be tested using the real-time PsD test

method, § 1.6.1. The higher the rate of testing, the higher the requirements on

the equipment (the required oil flow rates, the dynamic rating of actuators and the

structural integrity of the test rig to both load and vibration). A potential source

of error for the original implementation of PsD testing was the incremental stepwise

nature of the test - the current displacement is applied over a short ramp period

(which is less than the sampling time I:1t) and the structure is then held stationary

for a wait period while measurements are taken until the end of the time step.

However, if the structure is yielding, then significant force reductions may occur

during this time. To overcome this problem, the wait period must be reduced to

zero, reSUlting in a continuous PsD test which has subsequently become widely used

[47]. A common method of achieving this is by measuring the experimental forces

at small intervals during the ramp period and then using a combined extrapolation-

interpolation procedure to realize a smooth transition; details of this are given in

Nakashima and Masaoka [48].
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In the PsD method of testing, the equations of motion for the structure (i.e.,

Eq. (1.6)) are solved using either an explicit or implicit direct step-by-step inte-

gration method to obtain the response of the structure [49-57]. The mass matrix

M, viscous damping matrix C, and the excitation history F are numerically spec-

ified. The step-by-step numerical integration is performed in conjunction with the

measured restoring forces R from the test structure and are used as part of the

input for the next calculation step. One major difficulty in PsD testing is that

results are very sensitive to experimental errors. The error sources of a PsD test

are primarily executing errors introduced during the loading process and numerical

errors introduced during the direct integration process [34, 35]. In order to avoid

complications that may result from iterative procedures during PsD testing, the

dynamic integration algorithms employed are normally explicitly represented (for

example, the explicit Newmark method). The basic equations of the Newmark

method [58] are generally formulated as

(1.7)

Xk+l = Xk + ~txk+l + ~t2 [(~ - /3)Xk + /3xk+l],

Xk+l = Xk + ~t[(l - ,)Xk + ,Xk+l],

(1.8)

(1.9)

where ~t is the integration time interval, the subscript k indicates values at time

equal to k~t and /3 and, are parameters characterising the approximation strategy.

This numerical scheme can be directly implemented for pseudodynamic testing by

setting parameter /3 to be zero. Eq. (1.8) is then simplified as

(1.10)

in an explicit manner. With Xk+l calculated, the structure is then repositioned

accordingly.

However, the explicit-type algorithms do not preserve the desired characteristics of

stability and accuracy. To overcome this difficulty, Thewalt and Mahin [49] pre-

sented an unconditionally stable implicit integration scheme via the introduction of
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an analog electrical device without iterative procedures for displacement correction.

Bursi and Shing [55] (1996) presented an evaluation of some of the most commonly

used implicit time-stepping algorithms for pseudo dynamic tests.

Additionally, the Newmark algorithm is dissipative when 'Y > ~ such that the effect

of the control errors can be reduced. Therefore numerical damping can be achieved

at higher modes, where these errors are most problematic, while minimizing the

damping effects on the lower modes. Hilber et al. [59] introduced a modification to

the conventional Newmark scheme to achieves this, which was generalised by Bonelli

and Bursi [56] (2004). From Eq. (1.7), the a-shifted equation can be Written as

This is then solved using Eq. (1.8) and Eq. (1.9) for -~ ~ a ~ 0 with the parameters

{3 and 'Y given by

{3 = ~(1- (2),

'Y = !(1- 2a).

When a = 0 this reduces to the well-known explicit Newmark scheme. As a becomes

(1.12)

increasingly negative, the level of numerical damping increases. For all values of a

in the stated range, the scheme is implicit. Explicit schemes have the advantage

that the required displacement increment can be computed directly from the results

of the previous time-step. Implicit methods, however, require knowledge of the

acceleration at the end of the current time-step, which can only be achieved by

some form of iterative procedure. This is undesirable in structural testing because

of the risk of overshooting, which may have a significant effect on the response of

the structure.

Nakashima et al. [52] presented an operator-splitting (OS) method by dividing the

displacement term into the implicit and explicit parts and is derived under the

framework of the aforementioned Newmark method. This has been extended by

numerous researchers, such as Combescure and Pegon [57]. The restoring force R

in the equation of motion Eq. (1.6) is divided into implicit linear force RI = KIa;
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and explicit nonlinear corrective force RE(X), such that

(1.13)

where KI is the initial stiffness of the structure, R:+1 = Rk+l - K1Xk+l with

Xk+l being the predicted displacement of the (k + l)th time instant defined as

(1.14)

which is the explicit part of Eq. (1.7). During each step of the testing, the structure

is positioned according to Xk+l estimated by Eq, (1.14) and the restoring force Rk+l

is measured. The velocity and acceleration responses of the structure are in turn

estimated from Eq, (1.8), Eq, (1.9) and Eq. (1.13) and the structure's displacement

at time instant k + 1 is then modified as

(1.15)

If an appropriate parameter is chosen the OS method it is unconditionally stable,

as verified by Nakashima et a1. [52]. This method is particularly advantageous

in testing structures with inelastic behaviour. However, the state-space procedure

(SSP) [54] (based on the interpolation of the discrete excitation signals for piecewise

convolution integral) is more reliable than the Newmark method in terms of both

numerical accuracy and stability. In an attempt to enhance the PsD test, an SSP-

based integration algorithm (referred to as the OS-SSP method) is presented via

an integration of Nakashima et a1. [52] operator-splitting concept with the state-

space procedure by Wang et a1. [51]. Although the original state-space procedure

is unconditionally stable, its derivative (i.e. OS-SSP) does not preserve the desired

characteristics of numerical stability, requiring further investigation. However, much

of the current research into PsD testing is focusing on achieving real-time control as

discussed in the next section.
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1.6.1 Real-time pseudo-dynamic testing method

A variety of new types of structural components and devices (such as dampers, rub-

ber bearings and frictional elements) have started to be introduced into structures,

particularly in connection with vibration control. Many of these are highly velocity

dependent, possessing hysteretic behaviour in their vibrational characteristics and

therefore, the conventional PsD test is not suitable. In real-time PsD each cycle

of the control loop must be completed within the sample time step size, so that

the loading and structural response occurs at the same rate in the test as it would

in a real dynamic structure. Thus, in a real-time test the force(s) fed back will

also include the damping and inertia components (and therefore do not need to be

included in the numerical computation Eq. (1.6)) unlike conventional PsD testing

where only the static restoring force is fed back. Testing in real-time requires rapid

computation and communication, as time-scales are typically in the order of a few

milliseconds, but also imposes a number of stringent constraints on the way in which

this is achieved (this is discussed in § 2.4.4).

The first real-time PsD test system was developed by Nakashima et al. [60] and

applied to a single DOF system loaded by a single actuator. The basic procedures

remained the same as those developed for conventional PsD testing, however, a

dynamic actuator is now required to replace the quasi-static actuator in order

to load the structure with the desired accelerations. The problem with real-time

testing is there is only a finite response time of any controlled actuator. Thus, an

inevitable delay is introduced between the command signal being sent to an actuator

and it moving to the desired position. The force fed back from the experiment is

therefore incorrect, since it is measured before the actuator has reached its target

Position. Nakashima and Masaoka [48] and Horiuchi et al. [61] were the first to

observe the need for including a delay compensation scheme in the real-time PsD

control algorithm. This was continued by Horiuchi and Konno [62] and has conse-

quently become of fundamental importance to the real-time hybrid testing technique
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described in § 1.7 where these compensation techniques continue to be developed.

Although stability of an explicit numerical integration scheme can be assured for

real-time testing, due to the small sample times involved, the implementation of

mixed implicit-explicit algorithms and predictor-corrector numerical schemes have

been studied in terms of improving accuracy. Zhang et al. [50]proposed a state-space

formulation which is advantageous in real-time PsD testing since most structural

control problems are formulated in state space. The development and limitations of

real-time PsD testing is discussed in Nakashima [24].

1.7 Hybrid testing method

The hybrid testing method (most commonly known as sUbstructuring) is a combined

experimental-numerical testing technique. The technique involves creating a hybrid

model of the whole system by combining an experimental test piece, known as

the substructure (in some literature, the physical substructure), with one or more

numerical models (in some literature, the numerical substructure) describing the

remainder of the system. The purpose of this is that when it is impractical or

impossible to test the dynamic behaviour of an entire system at full scale (and scale

or numerical modelling on its own is unreliable, see § 1.3.1) this technique allows

the division of the system into these constituent parts. Typically, all the elements

(or gross part of the structure) which can be well characterized or evaluated using

linear equations are modelled numerically and all the elements which are highly

nonlinear and have complex dynamic behaviour are built full size and constrained

in a test rig as they would be in the real system. In essence, this creates a "virtual"

testing environment for the experimental substructure(s). The principal benefit

is that if the testing procedures are carried out correctly then the virtual system

will mimic the dynamic characteristics of the complete system. Therefore, the

dynamic properties of the substructure(s) under excitation can then be viewed in

terms of its effect on the entire system, rather than the characteristics of their own
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dynamic properties in isolation. This technique can therefore provide engineers with

a better understanding of the dynamic behaviour of large or complex structures in

a laboratory at full scale.

Substructuring has been applied in both PsD and real-time applications, although to

date, the PsD side has become more established. This is because the substructuring

technique was originally intended to be applied to seismic testing of large structures,

directly following on from the conventional PsD tests, described in § 1.6, as the

structures had become too large to test practically in a laboratory as discussed

in Dermitzakis and Mahin [63]. The first reported case of substructuring was by

Nakashima et al. [60] using a viscous damper for the experimental substructure

combined with a linear single DOF model of a multi-storey building as the remainder

of the structure. This has been followed up in subsequent years by using increasingly

complex numerical models and multi-substructure experiments, such as Pinto et al.

[64] who performed PsD substructuring tests on a large-scale model of an existing

siX-pier bridge at the ELSA laboratory, [44, 65]. The two physical pier models were

constructed and tested in the laboratory, while the deck, the abutments and the

remaining four piers were numerically modeled on-line. However, implementing the

substructuring process in real-time, such that the damping and inertial components

of the substructure dynamics are retained, introduces its own challenges [1, 66-68],

which are similar to those faced in real-time PsD testing (§ 1.6.1). The real-time

dynamic substructuring technique is introduced detail in Chapter 2 and discussed

throughout the remainder of this thesis, but an overview is given here for complete-

ness.

In real-time substructure testing, constraints are placed on both the numerical and

experimental side of the technique. The numerical model computation is explicitly

restricted to a single sample time period and the actuation devices used must have

a high enough dynamic rating to achieve the desired accelerations. As this currently

cannot always be achieved for large structures, real-time substructure testing has

been more readily applied to smaller scale component testing, for example Horiuchi
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et a1. [61], which has led to a broadening of the technique's application away from

seismic testing and more towards the field of mechanical engineering as shown in

Chapter 6 of this thesis. As only part of the structure is experimentally tested, the

nonlinear dynamic behaviour of critical elements or components can be viewed at

full scale. Single actuator substructuring has been developed beyond the "proof of

concept" stage where experiments on simple substructures have been carried out [62,

66, 69J. Multi-actuator substructuring presents a significant engineering challenge in

terms of implementation and transfer system cross coupling [1, 48, 68, 70, 71]. As for

real-time PsD testing (§ 1.6.1) an inherent delay is introduced into the substructured

system through the control of the actuators. This has far reaching consequences in

terms of stability of the substructured system and the control algorithms that must

be applied to achieve this.

A number of techniques have been proposed to assess the stability of a substructured

system. Horiuchi et a1. [61J used an energy analysis of periodic orbits to equate the

time delay to a form of negative damping with instability occurring at the point of

sign change for the damping of the overall system. Lim et a1. [72] examined how the

poles of a substructured system, and therefore its stability, are effected by changing

the magnitudes of a fixed gain version of an adaptive controller in continuous time.

In a similar vein, Darby et a1. [73] studied the position of the discrete closed-loop

poles of a multi DOF system under the influence of two variable delays. Stability

is determined by whether or not the poles lay within the unit circle. Wallace et a1.

[69] (Chapter 3, § 3.2) employed the method of modelling the substructured system

with delay differential equations (DDEs), which are derived from the ODE model

of the system by explicitly including the delay(s) due to the actuator(s). Gawthrop

et a1. [74] (Chapter 3, § 3.3) applied tools from control theory to study how the

phase margin of the modelled substructured system can provide a measure of how

near to instability the ideal system is in terms of how much phase lag is permissible.

In the field of real-time substructuring, the first time delay compensators were

obtained by assuming that the dynamics of the transfer system may be approximated
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to a pure delay. For example, Horiuchi et al. [61] and Blakeborough et al. [1]

proposed outer-loop forward prediction methods which use polynomial extrapolation

to predict forward the numerical model displacement by a fixed number of time-

steps. Darby et al. [73] relaxed the assumption of a pure delay by developing a

forward prediction method that varied the amount of delay compensation, based

on the error between the actuator displacement and the desired numerical model

displacement. This method was extended by Wallace et al. [75] (Chapter 4, § 4.3.6)

who developed an adaptive forward prediction algorithm that used variable poly-

nomial coefficients such that non-integer multiples of the previous time step could

be predicted and also incorporates an amplitude correction algorithm. The use of a

Smith predictor has also been proposed as a suitable delay compensator Sivaselvan

et al. [68]. Lag compensation via an experimental transfer function estimation of

the combined inner-loop controller and actuator dynamics has been proposed by

Gawthrop et al. [76] (Chapter 4, § 4.4.1) and Sivaselvan et al. [68]. The proposed

outer-loop controllers compensate for unwanted dynamics by applying the inverse

of the transfer function estimation. Model reference adaptive control has also been

suggested as an outer-loop strategy by Wagg and Stoten [67], Neild et al. [77] and

Lim et al. [78] which demonstrated how lag compensation can be achieved via this

approach.

Gawthrop et al. [74] (Chapter 5, § 5.2) proposed a four stage methodology to

achieving a robust substructuring algorithm. The adaptive nature of the outer-loop

controllers proposed in [71, 73, 75] allow for the compensation of the induced error

despite uncertainty in the dynamics of the actuators. Although they incorporate

SOme level of robustness due to this adaptation, they do not explicitly include

a robustness compensator proposed as a separate constituent part. Within the

framework of [74] it is possible to combine a number of different types of controller

and utilise them as and when they are required.

Traditionally, as the real-time technique typically has a very small sampling time,

standard explicit schemes have been used for the integration of the numerical model
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as numerical stability can be assured. However, as for the PsD testing technique,

the use of different integration algorithms have recently started to be investigated

in the context of real-time substructuring. Wu et al. [79] investigated the required

modification of the standard central difference method (CDM) due to the fact that

in order to obtain the correct velocity dependent restoring force of the substructure,

the target velocity is required to be calculated as well as the target displacement. Wu

et al. [80] has extended this approach to incorporate the operator-splitting method

(OSM) which provides explicit and unconditionally stable solutions for PsD testing

technique. However, the OSM only provides an explicit target displacement but not

an explicit target velocity, so that it is essentially an implicit method for real-time

substructure testing when the velocity-dependent restoring force is considered. Wu

et al. [80] proposed a target velocity formulation based on the forward difference of

the predicted displacements in order to achieve an explicit OSM algorithm (OSM-

RST). The stability and accuracy of the resulting algorithm was investigated using

single and multi DOF systems.

1.7.1 Distributed hybrid pseudo-dynamic test method

The George E. Brown Jr. Network for Earthquake Engineering Simulation (NEES) is

a current pioneering endeavour in earthquake engineering which started in the 1990s.

Funded by the US National Science Foundation, NEES is a research collaboration

that connects, through a high performance network, many types of earthquake

engineering testing sites located around the world. The NEES testing sites include

shaking tables, centrifuges, tsunami/wave tanks, large-scale laboratory experimen-

tation systems, and field experimentation and monitoring installations. All these

distributed testing facilities are integrated into a research collaboration by system

integration, the NEESgrid, which offers a data repository, enables tele-observation

and tele-operation, and has capabilities for distributed computer simulation.

Essentially, the concept of the distributed hybrid network brings together the theory
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of substructuring (§ 1.7) with the large scale testing of PsD (§ 1.6) and is discussed in

detail by Mosqueda [81J. Rather than model any part of the system numerically, the

whole structure is divided up into physical substructures and then geographically

distributed across the NEES network, taking advantage of the specific facilities in

each location. A PsD test can then be performed by passing the relevant information

over the internet between each location. Typically, a state flow type controller

is utilised such that while there are inevitable delays in passing the information

between sites the substructuring test can still be performed continuously, only held

in a wait cycle if there is a serious problem to prevent catastrophic damage of the

specimens.

1.8 Objectives and scope of current work

The work presented in this thesis is concerned with the development of real-time

substructure testing. Specifically, we focus only on the experimental side of the sub-

structuring technique. Although, the accuracy of the numerical modelling techniques

(including the stability of the integration strategy used [79, 80]) is an essential part

of achieving a substructuring algorithm that can faithfully reproduce the dynamics

of the original structure, it is possible, in part, to decouple the two constituent

components of this hybrid technique. The real-time architecture that will be used

throughout this work, presented in § 2.4.4, allows the use of well known fixed step

size explicit algorithms, such as the 4th order Runge Kutta, for which stability can

be assured due to the small sample times which will be employed. Additionally,

the numerical modelling techniques, described in § 2.4, are only used as tools to

facilitate this work. The study of real-time numerical modelling techniques (such

as ultra fast finite element analysis) and the stability of specific mixed operator

integration algorithms is therefore beyond the scope of this work but a potential

direction of future work, § 7.2. The remainder of the thesis is organised into the

following structure:
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Chapter 2 introduces the concept of creating a substructured system in full. The

small scale case study substructuring examples which will be used throughout the

remainder of the work are introduced here. Using these conceptually simple systems

we are able to introduce the fundamental problems associated with the occurrence

of delay in a substructuring algorithm. Additionally, we discuss important concepts

from synchronization theory which are essential techniques for understanding the

experimental results.

In Chapter 3 we study the stability of the substructured system in direct relation to

the magnitude of this delay error present. We present two methods for identifying

the critical limit of stability, the maximum value the delay error can reach before the

onset of exponentially growing oscillations (the definition of an unstable system).

We compute explicit calculations for these stability limits before demonstrating a

numerical approach which has the advantage of being suitable for complex and

nonlinear systems with more than one delay. It is important to note that this

form of instability is a different to the numerical instability encountered from an

integration algorithm.

Chapter 4 introduces and discusses the theory of delay compensation in terms of

a real-time substructuring system. This is a different principle to the classical

control of a delayed system as it is inevitably linked to the stability of the overall

algorithm through the magnitude of the delay which remains. We discuss two

different formulations of a compensation scheme and show how an adaptive control

algorithm can be used to overcome changing plant conditions and any uncertainty

in the modelling process for the dynamics of the actuators. Additionally we describe

a measure of accuracy for the substructuring algorithm such that the entire system

does not have to be modelled.

Chapter 5 extends the control strategy of Chapter 4 to introduce the concept

of robustness. Robustness is an essential consideration in the formulation of a

successful testing strategy as it reduces the uncertainty of the actuator response
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and increases the available margin to the critical limit of stability. However, this is

always achieved in compromise of the dynamical accuracy of the numerical model.

This work leads us to develop a four stage testing methodology that can be applied

to any substructured system to help ensure successful testing.

We bUild on all the fundamental concepts introduced and developed up to this point

in order to study a real industrial problem of substructuring in Chapter 6. We study

a helicopter lag damper connected to numerical model of an individual blade excited

by flight test data. The damper itself is from the EH101 military utility medium

lift helicopter (manufactured by AgustaWestland Ltd.) and is highly complex due

to its nonlinear piecewise smooth hysteretic characteristics. We demonstrate the

"proof of concept" of real-time substructuring for such a complicated substructured

system and show the broadening of the real-time technique from seismic testing of

large civil engineering structures to smaller scale component testing of mechanical

systems.

Finally, in Chapter 7 we summarize the work presented in this thesis and discuss

potential future directions for both the current projects discussed in the thesis and

for the field of real-time substructuring itself.
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Chapter 2

Real-time dynamic substructuring

SUMMARY: This chapter gives a complete introduction to the real-

time dynamic substructuring technique. We discuss the component parts

of substructuring and how they can be combined together with a com-

prehensive control strategy in order to achieve successful experimental

implementation. The small scale bench-top case studies, that will be

used throughout this thesis, are introduced and described in full in this

chapter.

2.1 Introduction

In this thesis we consider the hybrid experimental-numerical testing technique known

as real-time dynamic substructuring. The technique involves creating a hybrid model

of the whole system - the emulated system - by combining an experimental

test piece - the substructure - with one or more numerical models describing

the remainder of the system. This creates a "virtual" testing environment for

the substructure that, if done correctly, will mimic the dynamic characteristics

of the complete system. Therefore, the dynamic properties of the substructure

under excitation can then be viewed in terms of its effect on the entire system,

rather than the characteristics of its own dynamic properties in isolation. This
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CHAPTER 2. REAL-TIME DYNAMIC SUBSTRUCTURING

technique can therefore provide engineers with a better understanding of large or

complex structures when it is impractical to build (or test) the complete system in

a laboratory.

The substructuring technique was originally intended to be applied to situations

where (accurate) numerical models of experimental parts are unreliable, as discussed

in § 1.7. As only part of the entire structure is tested experimentally, it allows

engineers to view the behaviour of critical elements under dynamic loading at full

scale, thus negating the need to modify to the structure to account for scaling effects

as described in § 1.3.1. So far the technique has been developed successfully using

expanded time scales, known as pseudo dynamic (PsD) testing, see § 1.6 [33,44, 60,

64]. As PsD testing is carried out quasi-statically, any time-dependent behaviour of

the test specimen is lost. However, this type of testing is usually applied to rate-

independent structures and as a result has achieved a large amount of success in the

field of earthquake engineering because the strain-rate sensitivity of the materials

can often be neglected.

Implementing the substructuring process in real-time means that the damping and

inertial components of the substructure dynamics are retained [1, 66-68]. To achieve

this, constraints are placed on both the numerical and experimental side of the

technique. The numerical model computation is explicitly restricted to a single

sample time period and the actuation devices used must have a high enough dynamic

rating to achieve the desired accelerations. As this currently cannot always be

achieved for large structures, real-time testing has more readily been applied to

smaller scale component testing, for example Horiuchi et a1. [61], which has led to

a broadening of the technique's application more towards the field of mechanical

engineering as shown in Chapter 6.

To carry out a substructuring test the component of interest is isolated and fixed

into an experimental test system. To link the substructure to the numerical models,

a set of transfer systems (which act on the substructure) are controlled to follow
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the appropriate output from each respective numerical model, which is typically

a displacement. At the same time the forces between the transfer systems and

the substructure are fed back into the numerical models to give a form of bi-

directional coupling. Transfer systems are typically single actuators (electric or

hydraulic) including their proprietary ("built in") controller, but can also be in the

form of a more complex test facility such as a shaking table. The proprietary control

forms the inner-loop control of a substructuring algorithm and is typically a linear

PID controller (software or hardware). Its primary purpose is to achieve a suitable

"linear" response from the transfer system such that the effects of uncertainty and

nonlinearity are reduced to an acceptable level. Single actuator substructuring has

been developed beyond the "proof of concept" stage where experiments on simple

substructures have been carried out [62, 66, 69]. Multi-actuator substructuring

presents a significant engineering challenge in terms of implementation and transfer

system cross coupling [1, 48, 68, 70, 71].

In a substructuring algorithm, the feedback forces (from the substructure) are

treated as an external influence (or forcing) on the numerically modelled part of

the system, which can then be described by a set of ordinary differential equations

(ODEs). This is advantageous as it is simple and fast to integrate an ODE numer-

ically using an implicit or an explicit algorithm, such that real-time control can be

achieved as the entire process must take place within the hard real-time constraints.

Additionally, if the feedback forces are treated as autonomous entities the dynamics

of the numerical models may be decoupled when the substructured system has more

than one transfer system, see § 2.3.2. This allows more flexibility in terms of deciding

upon which type of control strategy should be employed.

A main focus of the work presented in this thesis is on the fundamental governing

principles behind the experimental side of substructuring. The aim of the single

and multi degree-of-freedom (DOF) case studies presented in § 2.3.1 and § 2.3.2 is

to develop an understanding of the effect of delay errors that are always present

in a substructured system. Delays arise naturally as it is not possible for any
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CHAPTER 2. REAL-TIME DYNAMIC SUBSTRUCTURING

(controlled) transfer system to react instantaneously to a change of state as pre-

scribed by its numerical model. In fact, there are a number of different delays which

combine together to give the overall delay of the transfer system, T, including data

acquisition, computation, digital signal processing and the actuator delay itself. In

some situations the transfer system delay may be so small as to be negligible, but

the typical situation in substructuring is that this delay is large enough to have a

significant influence on the overall dynamics of the substructured system. The loss

of stability as a function of increasing delay is typically observed in substructured

systems by the onset of oscillations with positive exponential growth. The stability

criterion, the maximum (or critical) transfer system delay, r-, for a substructured

system is discussed in detail in Chapter 3.

It is therefore an essential condition that the actual transfer system delay, T, is less

than the critical delay, Te, in order to ensure that the substructured algorithm is sta-

ble. In fact, there are a number of differing states the substructuring algorithm can

reside in as can be seen from Table 2.1. Note that in Table 2.1 there are two critical

delays; Te is defined as the delayed critical limit and TJ is defined as the forward

critical limit. In order to achieve any of these states a delay compensation scheme

must be utilized in the substructuring algorithm. Typically, this has been achieved

by including additional control algorithms to act as an outer-loop controller around

the existing proprietary control. A number of substructuring control strategies have

I State II Condition

T > Te Unstable algorithm.

o < T < Te Stable: Numerical model(s) has a bounded error.

T = 0 Stable: Numerical model(s) replicates emulated system exactly.

TJ < T < 0 Stable: Numerical model(s) has a bounded error.

T < TJ Unstable algorithm.

Table 2.1: Substructuring algorithm states (assuming zero transfer system amplitude

error); a delay gives positive +T, a lead gives negative -T.
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been reported [1, 61, 67, 68, 71, 73, 75, 76, 78, 82]. These strategies explicitly

eliminate the delay introduced by the transfer system in the force fed back from the

substructure in various different ways. The outer-loop controllers suggested to date

broadly fall into two categories, those that provide (time) delay (e-sT) compensation

and those that provide (frequency dependent) lag (e.g'l;sT) compensation. To date,

much of the work has aimed to completely negate the effect of the transfer system

dynamics such that 7 = 0 and the substructured system "exactly" replicates the

dynamics of the emulated system; the delay compensation schemes used in this

thesis are presented in Chapter 4. In fact, the forward critical limit can also be

a useful tool in achieving a more robust substructuring algorithm and is discussed

in detail in § 5.5 and in Wallace et al. [75]. It should be noted that the delayed

critical limit, 7c, is solely a function of the system dynamics where as the forward

critical limit, 71, is defined either by the system dynamics or (more likely) by the

characteristics of the delay compensation scheme employed.

Once a stable substructuring algorithm has been achieved for an experimental test, a

key measure is that of accuracy [70, 81J. It is the typical situation in substructuring

that the dynamics of the substructure are not known in full, in fact, that is the

primary reason for performing the substructure test. If this is the case, how do we

know if our substructuring test is giving us an accurate portrayal of the components

dynamics in situ? In § 2.6 [75] we discuss a substructuring test's accuracy in terms

of the component parts of a substructuring algorithm listed below:

Local (control) error: This is the synchronisation error between the actual state

(typically a displacement) of the transfer system compared to the desired state

of the numerical model.

NUmerical model error: This is the error between actual state of the numerical

model compared to the ideal state of the of the emulated system.

Global (substructuring) error: The overall error between the actual state of the

transfer system and the ideal state of the emulated system. This can also be
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described by the actual state of the substructure compared to the ideal state

of the of the emulated system.

The local error and the numerical model error are coupled in the substructuring

algorithm and result in the overall global error. The nature of this coupling is

system dependent and is unknown unless the emulated system dynamics can be

explicitly calculated. As this is not the norm for substructuring, the only physical

measure of accuracy available is the local error - the synchronisation error of the

transfer system. In § 4.3.7 we discuss a measure of the accuracy for a substructuring

test without having to simulate the emulated system by inferring information from

the actuator performance capacity envelope.

2.2 A generalised substructuring algorithm

To carry out a substructuring test, the numerical model and the experimental

substructure are run in parallel and interact in real-time to emulate the dynamic

behaviour of the complete structure. This interaction is achieved through the

exchange of information at the interface of the numerical model and the substructure.

A generalised representation of a substructuring algorithm is shown in Figure 2.1.

Firstly, the displacements (or higher state derivative) at the interface are calculated

using the numerical model(s) and imposed via the actuation device(s) (transfer

systems) on the physical substructure. Secondly, the force(s) due to imposing these

displacements on the substructure are measured and fed back to the numerical

model(s) where they are included at the interface for the next time step.

We can formalize this conceptual substructuring algorithm by converting it into a

control block diagram showing the inner-loop (proprietary) control - to reduce the

uncertainty of the transfer system dynamics to an acceptable level - and the outer-

loop (delay compensation) control - to achieve a stable substructuring algorithm

- as shown in Figure 2.2. The detail of the variables shown Figure 2.2 are as

follows; state variable for the ground excitation: r, state variable for the Numerical
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Ground
excitation

Apply the calculated
transfer system demand

signal(s) to the
substructure

SUBSTRUCTURE
(experimental)

Use the desired
displacement and the
actual displacement of
the transfer system to
calculate the control

demand for the
actuator. Measure the

resulting force
experimentally.

NUMERICAL
MODEL

Use the ground input
and force fed back

from the substructure
to calculate the

desired interface
displacement for the
next time interval.

Apply the experimentally
measured force(s) to
the numerical model

Figure 2.1: A generalised representation of a real-time substructuring algorithm

(Adaptation of Blakeborough et al. [1]). The entire cycle must be performed and

completed within one sample period ~t.

Madel: z, state variable for the delay compensated Numerical Model demand: z',

state variable for the Transfer System: x, synchronisation error (local error): e,

control input to actuator (voltage): u, resulting force from imposed state change on

substructure: F.

I---~-----------------------------
: Transfer System
I
Ir-----,:
I z·

(Inner feedback loop)

Numerical
Model I

I~--__, :
I
I
I
I
I
IL _

F

(ouler feedback loop)

Figure 2.2: A generalised real-time substructuring block diagram (inner-loop

control depicted is a linear proportional controller).
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It should be noted that from now on the following terminology will be used: z

for a numerical estimation of a state and x for an experimentally measured state.

Due to the real-time nature of this type of substructuring the sample time, !1t, is

small (typically, no more than a few milliseconds). This allows explicit integration

schemes to be used as stability of the numerical schemes can be assured. This

is not the case in PsD testing as the time scales are expanded and is one of the

fundamental differences in implementing the two techniques. In § 2.4 we discuss the

use of integration schemes in more detail.

2.3 Small-scale experimental substructuring case studies

The basis of this thesis is on the fundamental principles behind the experimental

side of substructuring. In order to understand these we need to utilise simple

examples such that we have full knowledge of the emulated system. In this way

it will be possible to test out the ideas presented in this thesis on stability, delay

compensation, robustness and accuracy by explicitly measuring the accuracy of the

substructuring tests against the ideal dynamics of the emulated system. These

ideas can then be developed into an overall strategy, which is presented in § 5.2, for

achieving successful large-scale industrial substructuring as described in Chapter 6.

The following sections describe both a single and multiple degree-of-freedom (DOF)

substructuring case study which will be used throughout the thesis.

2.3.1 Single DOF substructuring example

We consider the example of a single mass-spring oscillator system with one excitation

input, shown in Figure 2.3, for the emulated system. This well known linear

system will allow us to demonstrate the fundamental problems associated with the

occurrence of delay in a substructuring algorithm in its most simple form as there

is no inertia in the substructure. The general equation of motion for the system can
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~r ~z*

m

c

Figure 2.3: Schematic representation of the single mass-spring oscillator

be written as

mz· + cz" + kz" + ksz* = er + kr, (2.1)

where, m and e are the mass and damping scalars respectively, k and k, are the

stiffness scalars of the numerical model and the substructure respectively, and r is

the support excitation. The state of the system is represented by z", where (.) *

is used to indicate that these dynamics are based on the "complete" dynamics of

the emulated system and not those of the numerical model of the substructuring

algorithm. In this sense, Eq. (2.1) is a good test case; note that for more complex or

nonlinear systems it is generally not possible to calculate the emulated dynamics in

this way. We can now use Eq. (2.1) to assess the performance of the substructuring

algorithm and highlight the effect of the delays in the system.

In order to create a substructured model of the system shown in Figure 2.3, the

spring k; is isolated and taken to be the substructure. The remainder of the

structure, the excitation wall and the mass-spring-damper unit, is modelled nu-

merically. This decoupling results in the substructured system shown schematically

in Figure 2.4. The dynamics of the numerical model are governed by

mz + c(z - r) + k(z - r) = F, (2.2)

where the feedback force F is the substructure response of

(2.3)

(see Figure 2.4). As previously stated, the transfer system has its own dynamics and

thus cannot react instantaneously to the change of state of the numerical model.
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Numerical Model

~r

m I----F

c

i Substructure

~x
ksr:::=====)J!maImtv~

Transfer System

u

'-----II Controller z
x

Figure 2.4: Schematic representation of a substructured system with one transfer

system. State variable for the Numerical Model: z(t), state variable for the Transfer

System: x(t), control input to actuator (voltage): u(t).

Accordingly, the inevitable time delay T is introduced into the transfer system

response x and thus, a corresponding error in the feedback force F, as x t- z; the

exact nature of this is discussed in Chapter 3. This shows how the feedback force is

directly influenced by the transfer system delay and how it introduces a systematic

error into the substructuring algorithm. Unless any filtering is performed on the

measured force signal (analogue or digital) the delay magnitudes of the transfer

system x and the feedback force F will be identical.

2.3.2 Multi DOF substructuring example

The general principle of substructuring remains the same regardless of the number

of transfer systems. However, the problem from a control point of view becomes
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more complicated for more than a single transfer system due to the introduction

of cross-coupling between the control signals. For this reason, we consider the

example of a three mass oscillator system with two diametrically opposing excitation

walls as shown in Figure 2.5. This will allow us to demonstrate the problems of

achieving accurate control for multi-actuator substructuring using a conceptually

simple example. The masses are coupled by four linear springs, ki' and damped

by coupled viscous dampers, Ci, where i = 1,2,31,32 (constants 31 and 32 indicate

firstly they act on the substructure, m3, and secondly which transfer system they

connect to). The system is excited via two moving supports, rj, where j = 1,2. The

general equation of motion for such a system can be written as,

Mt +D~+K~ = Sr(t), (2.4)

where, M, D and K are the mass, damping and stiffness matrices respectively and

Sr(t) is the support excitation. e is a vector which represents the states of the

system, such that

(2.5)

where, (.)* is again used to indicate that these dynamics are based on the "complete"

dynamics of the emulated system. In order to create a substructured model of

the system shown in Figure 2.5, the middle mass, m3, and accompanying springs

and dampers (k31' k32 and C31, C32) are taken to be the substructure. This leaves

both excitation walls and adjacent masses to be used to create two independent

numerical models whose influence is imposed on the substructure by two separate

Figure 2.5: Schematic representation of the three mass system
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Numerical Model 1 Numerical Model 2

Transfer System 1 Substructure Transfer System 2

f--X1 f--x3 f--X2

k31 k32
f-vvvv'- f-vvvv'-1

Hr- rn3 Hr-U1 U2C31 ()() C32

Controller

1 1

Figure 2.6: Schematic representation of a substructured three mass system with

two transfer systems

transfer systems via two independent control signals, UI and U2. The influence of

the substructure is now represented by two autonomous forces, FI and F2, which

are measured experimentally and then imposed back on the numerical models. This

new substructured model is shown schematically in Figure 2.6.

From Figure 2.6, the dynamics of the two numerical models can be written as,

mlZI + CI(ZI - h) + kl(ZI - rd = FI,

m2z2 + c2(r2 - Z2) + k2(r2 - Z2) = F2·
(2.6)

Due to the linear nature of the example considered here, we know explicitly the
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forces at each time interval allowing us to measure the accuracy of an individual

test, where

Fl = C31(Z3 - Zd + k31(Z3 - ZI),

F2 = C32(Z2 - Z3) + k32(Z2 - Z3)'

As in § 2.3.1 we can now use Eq. (2.6) with Eq. (2.7) to assess the performance of

(2.7)

the substructuring algorithm and highlight the effect of the delays in the system.

This highlights the difficulty in assessing the accuracy of substructuring tests for

complex systems, as if Eq. (2.7) was unknown the end results of the test could never

be compared with results from the emulated system. This point is discussed in

greater depth later in this chapter and in § 4.3.7.

We note that there are now two distinct and independent delay errors. Transfer

System 1 (TS1) has the delay 71 and correspondingly Transfer System 2 (TS2) has

the delay 72. Thus, the nature of the critical delay criterion is more complex and

is discussed in § 3.2.5. Additionally, as each transfer system has its own individual

characteristics it is possible, and in fact highly likely, that the delay magnitudes will

not be identical. This can introduce erroneous dynamical effects in the substructure

analogous to that found in multiple support excitation experiments [83]. It is

therefore beneficial to decouple the dynamics of the transfer systems such that their

control can be dealt with independently. This is described in more detail in § 2.4.3.

2.3.3 Experimental set-up

Figure 2.7(a) shows the experimental substructure setup for the multi nOF case

study of § 2.3.2. An enlarged view of the substructure with the load cell locations

is shown in Figure 2.7(b). This rig can be used for both the single nOF and the

multi nOF case studies (as well as many other configurations for a maximum of two

actuators) by rearranging the actuators, masses and springs as required.

The actuators are UBA (timing belt and ball screw configuration) linear Servomech

actuators with maximum force capacity of 410N and maximum linear speed of
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Figure 2.7: (a) Experimental rig set-up of substructured model. (b) Enlarged view

of substructure.

640mm/s. As with all actuators there is a drop-off in the maximum force as its

driving speed is increased producing a specific performance envelope for linear

behaviour. Each actuator is driven independently by a Panasonic Minas Series

AC servo motor which is configured only as an analogue amplifier. The servo-

mechanical actuators used on the rig can be viewed as an advanced servo system

- the AC motors are designed specifically as a high performance motion control

device. The motors provide a maximum speed of 5,000 rpm, optional17-bit absolute

encoder resolution, and three different inertia levels for best application suitability.

Additionally, different drives are provided to cover a power range of 50 to 5000

watts, and the system may be controlled via Analogue Voltage Signal (speed or

torque), or two digital inputs (Step and Direction). For the purposes of our control,

we shall use the analogue voltage control as this allows the control algorithm to

be fully determined within the substructuring algorithm, rather than additional

control being added by the servo unit, whose characteristics can only be viewed as

PAGE 40



2.3. SMALL-SCALE EXPERIMENTAL SUBSTRUCTURING CASE STUDIES

a "black-box".

Displacements are measured using RDP Electronics DCT captive guided DC LVDT

(Linear Variable Differential Transformer) displacement transducers which have a

±O.U% linearity error on full scale deflection of 50mm. Each unit has an internal

bearing that guides the armature and built-in de to de signal conditioning to help

remove noise.

The force applied to the substructure is measured using RDP Electronics model 31

precision miniature tension/compression load cells. The unit is applicable both

in tension and compression with linearity ±O.15%, hysteresis ±O.15% and non-

repeatability ±O.1% of full scale deflection.

Each mass is a constant 2.2kg and connected to the rig via three parallel shafts

constraining its motion to one degree-of-freedom with an axial alignment accuracy

of ±O.lmm. Each mass has three LBBP linear ball bearings with double lip seals

and raceway plates to reduce friction. Due to the positioning of the load cells, see

Figure 2.7(b), the masses attached to the actuators are simply part of the actuator

piston as they are rigidly attached. If the load cell was positioned in between

the actuator piston and the mass then it will act as added mass with its inertia

affecting the force signal (the mass of the nylon support can be neglected). In

this instance, this must be taken into account in the numerical model, either to

compensate for its existence or to alter the substructured system being tested. A

range of springs may be attached to achieve differing spring constants, these vary

from k = 1500N/m to k = 9000N/m, each with a corresponding damping ratio, c,

experimentally established through system identification techniques.

2.3.4 Transfer system identification

System identification aims to produce a model of the system based on observed

input-output data. There are many ways to describe a system and to estimate
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its dynamic properties [84]. No approach will ever lead to a perfect model, how-

ever, a good model is often useful since it will directly improve experimentation as

uncertainty about the plant dynamics is reduced. Generally, system identification

techniques fall into one of two categories, time domain and frequency domain.

Figure 2.8 shows the open loop time domain response of one of the actuators that

will be used for experimentation as described in § 2.3.3. Due to the fact that

the AC servo motors are being used simply as analogue amplifiers (to power the

actuators), the effect is the actuator's response acts like a natural integrator, in

effect the actuators are under velocity control - a constant demand voltage will

produce a constant speed of the actuator piston, shown by the constant gradient of

the Response line from approximately 0.51s. Between the time of 0.5s (when the

step demand is initiated) and 0.51s there is a transitional period. However, this

transition is not smooth, in fact, there is a deadzone for the first 4ms of this time

frame. All controlled devices have some form of deadzone (which is one of many

types of nonlinear phenomena) - it is the time taken for the static friction of the

internal mechanism to be overcome such that the active device starts to move. In

the case of this actuator, the minimum open loop deadzone time is 4ms, this can be

reduced by closing the control loop such that the control demand can compensate

15
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Figure 2.8: Open loop step response for Actuator 1 (~t = Ims)
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for this nonlinearity.

We now perform an open loop time domain system identification of the same actu-

ator using a swept sine wave signal as an excitation, this will allow us to gain an

understanding of the dynamic characteristics of the actuator over the operational

range of frequencies. Figure 2.9 shows such a test between 1Hz and 15Hz completed

in 60s. As expected, due to the natural integrator characteristics, the actuator

overshoots dramatically at low frequency due to the prolonged voltage demand of a

given state (+ve or -ve). From these results we can compute an estimated model

(transfer function) of the actuator's dynamic properties. For this we have used

the oe(Output Error) MATLAB function, which attempts to predict the best fitted

model from a polynomial based output error algorithm. From Figure 2.9 we extract

the open loop transfer function for Actuator 1 to be: '

y(s) 0.7068s+5700
G(s) = u(s) = S2 + 62.26s + 31.61' (2.8)

where, y(s) is the output, u(s) is the input and G(s) represents the plant [84].

We can now close the control loop and apply the proprietary (linear) controller that

will act as the inner loop control of the substructuring algorithm - such that the

actuator and the proprietary controller form the transfer system. For simplicity,
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Figure 2.9: Open loop sine sweep response for Actuator 1; 1 - 15 Hz in 60s.
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we will only be using a linear proportional (P) controller for the proprietary control

rather than a PID (Proportional, Integral and Derivative gains) controller. This

is valid as the plant is a stiff system with low steady state error ([84]) which is

relatively noisy, therefore any derivative action must be very small. In fact, as will

be discussed a number of times in this thesis, we want as predictable a response

as possible from the proprietary controller such that there is low uncertainty when

applying any outer loop control.

The appropriate proportional gain, kp, must be identified. Figure 2.10 shows the

Roots Loci plot for the open loop transfer function, Eq. (2.8), including conversion

factor for displacement control in millimeters. We require a fast response from the

transfer system to achieve a good representation of the numerical model (which

will be in the form of a smooth signal) and to reduce the demands on any outer

loop controller. Thus, the closed loop gains should be designed to give a slightly

underdamped response ( = 0.7 - 0.8. As can be seen from Figure 2.10 a loop gain

X 10·2~------~------~--------~------~------~--------r-----~

-2~------~------~--------~------~------~--------~------~-3.5 -3 -2.5 -2 -1.5
Real Axis

-1 -0.5 o
X 10·

Figure 2.10: Roots Loci for the open loop step response of Transfer System 1,

Eq. (2.8). Closed loop poles positioned to give closed loop damping of ( = 0.7 - 0.8;

( = 0.776 corresponds to a loop gain of 1.
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of kp = 1 gives a damping value of ( = 0.776. This gives us unity feedback and

further simplifies are understanding of the transfer system.

We can now observe the closed loop dynamic response of the transfer system for

this proportional gain of kp = 1 in Figure 2.1l. Figure 2.11(a) shows the closed

loop step response, we observe approximately one overshoot representing a slightly

underdamped system as designed in Figure 2.10. Although, it should be noted that

the internal mechanisms of the actuator are complex and include a braking device

14

(\ l- Demand ~
- Response12

~ 10
E
..§. 8c:
ID

~ 6
o
! 4
is

2

o
-2o 0.2 0.4 0.6

Time (s)
0.8 1.2

(a) Step response.

2
E
..§.
c:
ID

~ 0
.!'!!
1F -1
i:5

-2

-3
o 10 20 30

Time (s)
40 50 60

(b) Sine sweep response; 1 - 15 Hz in 60s.

Figure 2.11: Closed loop response for Transfer System 1 with kp = l.
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- the effect of this can be seen at approximately 0.45s changing the response from

a classic 2nd order response to being nonlinear. Figure 2.11(b) shows the closed loop

response of the transfer system to the sine sweep excitation performed originally for

the system identification in Figure 2.9. We observe a gradual increase in overshooting

as the frequency increases due to the velocity control characteristics of the AC servo

motors. However, more importantly in terms of a substructuring algorithm is the

magnitude of the delay. The results from Figure 2.11(b) we~e run through a post

processing algorithm that calculates the delay magnitude at the zero crossing points

(z = 0) and is shown in Figure 2.12. As the data are sampled at discrete points

in time (at a sampling rate of 1kHz) the algorithm can only estimate the delay to

the nearest millisecond, however, a distinct trend emerges showing that over this

experimental range the response of the actuator can be approximated very well to

a system that has a constant delay of approximately 9ms. The trend is slightly less

obvious at very low frequency as the response is more significantly effected by noise

and the transfer system nonlinearities; we discuss this in more detail in § 5.2. We

improve upon the estimation of this delay magnitude when we discuss the concept

of delay compensation in Chapter 4.

A similar analysis was performed for the second actuator (required for the multi

14r---------~--------~--------._--------_r--------_.--------~

......_----------------------1
12

2

o~--------~--------~--------~--------~--------~--------~o 10 20 30
Time(s)

40 50 60

Figure 2.12: Delay magnitude plot for the sine sweep response of Figure 2.11(b).
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DOF Substructuring example of § 2.3.2) and gave comparable results (again with a

gain value of kp = 1) with an approximate delay of 8ms and similar characteristics,

although the exact dynamics are not identical. The fact that the transfer systems

are similar is unsurprising as the actuators and servos are of the same type, however,

the fact that the dynamics are not identical means that each transfer system must

be treated independently in terms of applying an outer loop controller.

2.4 Numerical modelling techniques

An essential part of substructuring is the way in which the remainder of the system

(what is left over after the substructure has been removed) is modelled numerically.

The accuracy of the numerical modelling techniques (including the stability of the in-

tegration strategy used [79, 80]) helps to determine how faithfully the substructuring

algorithm can reproduce the dynamics of the original structure. However, the work

presented in this thesis is concerned with the development of the experimental side of

the substructuring technique, and thus, numerical modelling algorithms do not form

a major part of this thesis. The real-time architecture that will be used throughout

this work, presented in § 2.4.4, allows the use of well known fixed step size explicit

algorithms, such as the 4th order Runge Kutta, for which stability can be assured

due to the small sample times which will be employed. Therefore the numerical

modelling techniques, described in the remainder of this section, are only used as

tools to facilitate the development of our understanding of the experimental side

of real-time dynamic substructuring. The study of real-time numerical modelling

techniques (such as ultra fast finite element analysis) and the stability of specific

mixed operator integration algorithms is therefore beyond the scope of this work

but a potential direction of future work as discussed in § 7.2.

In the context of numerical modelling, it is important to comment on the integration

schemes used to run these processes in real-time. As real-time substructuring

typically has a small sample time, explicit integration schemes can be used as
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stability can be assured. It should be noted that this is one of the crucial differences

in implementing real-time compared to PsD testing. Due to the time scales being

expanded for PsD it is often necessary, or essential, to use an implicit scheme. In

fact, mixed implicit-explicit schemes such as the operator splitting approach are

most commonly used [47, 57, 80]. To illustrate the differences between implicit and

explicit integration we can consider the following linear system

:i; = Ax + Bu. (2.9)

For the purposes of simulation, this system can be discretised (with sample interval

At) in two ways

1. :i; = Xitl-X,

At '

2. • _ Xi-X,-l
X - At

(2.10)

(2.11)

Eq, (2.10) gives rise to the forward Euler or explicit integration scheme

(2.12)

and Eq. (2.11) gives rise to the backward Euler or implicit integration scheme

(2.13)

For the purposes of implementation, Eq, (2.13) must be rewritten as

(2.14)

The explicit method gives simple implementation whereas the implicit method re-

quires matrix inversion. However, the explicit method is only stable if

2
At < r:xI' (2.15)

where A is the largest eigenvalue of A. If this largest eigenvalue is real, A= ~,where

'P is the smallest system time constant. Therefore,

At < 2<p. (2.16)
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If the system is stiff, that is it contains at least one small time constant relative to

the dominant time constants, Euler integration is not feasible due to the very small

sample interval At required. In contrast, the implicit method is stable.

Due to the real-time architecture that is described in § 2.4.4 it is possible to use

higher order integration schemes than the Euler method described above. All the

experiments presented in this thesis use a 4th order Runge-Kutta scheme. Although,

Runge-Kutta in its original form is not real-time compatible (as the 4th step requires

information from the following time step) the real-time architecture used includes a

modified version which is real-time compatible. The use of a higher order scheme

has no effect when comparing the substructure results to the emulated system, as

both are similarly affected by the same numerical errors, however, the accuracy of

the overall test compared to the real system does increase as the integration scheme

produces smaller numerical errors.

The following sections, § 2.4.1 to § 2.4.3, describe the three numerical modelling

techniques that will be used at various times throughout the work presented in this

thesis.

2.4.1 Transfer function representation

The transfer function is the most simple modelling technique and is most commonly

Used in the field of control engineering. It is a linear estimation of a system G(s)

and is defined as the ratio of the Laplace transform 1 of the output variable y( s) to

the Laplace transform of the input variable u( s ), with all initial conditions assumed

to be zero [85].

G( ) = y(s)
s u(s)' (2.17)

A transfer function may be defined only for a linear, stationary and constant pa-

rameter system. A nonstationary system, called a time-varying system, has one or

IThe Laplace transform is a transformation of an arbitrary function f(t) from the time domain

into the complex frequency domain F( s) [85J.
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Dynamic System

_U(_s)~~!~ G_(S_) __ ~_y_(s~).

Figure 2.13: A block diagram representation of a general transfer function G(s)

more time-varying parameters and therefore the Laplace transformation may not

-, be utilized. Furthermore, a transfer function is an input-output description of the

behaviour of the system; thus, the transfer function description does not include

any information concerning the internal structure of the system and its behaviour.

Eq. (2.17) can be represented by a block diagmm as shown in Figure 2.13.

In substructuring, we can use this relationship between the output and the input to

model the dynamics of the numerical model in place of the general transfer function

G(s). Firstly, using the single DOF example of § 2.3.1 we obtain the following 2nd

order transfer function for the numerical model of the substructuring algorithm:

G(s)= c.s+k
m.s2 + c.s + k

F
(2.18)

m.s2 + C.s+ k'

As the dynamics of the substructured system are decoupled, by treating the feedback

forces as an autonomous disturbances, the multi DOF example of § 2.3.2 is of the

same form as Eq. (2.18) but has two independent models:

(2.19)

(2.20)

Representing the numerical model of a given substructured system in this way

is relatively quick and simple, however, it will only provide a linear estimation.

Additionally, when the system has various discrete dynamical states (for example

the nonlinear piecewise smooth nature of the damper examined in Chapter 6) this

method can become cumbersome.
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2.4.2 Bond graph representation

A bond graph is an explicit graphical tool for capturing the common energy structure

of systems and can increase one's insight into the system's behaviour. They provide

a concise description of complex systems though vector notation. Moreover, the

notation of causality provides a tool for the discussion of a system's behaviour, in

terms of controllability, observability, fault diagnosis, etc. Through this approach,

a physical system can be represented by symbols and lines, identifying the power

flow paths. The lumped parameter elements of resistance, capacitance and inertial

components are interconnected in an energy conserving way by bonds and junctions

resulting in a network structure. Bond graphs are discussed in the text books of

Ljung and Glad [86], Cellier [87], Karnopp et al. [88] and the journal special issue

of Gawthrop and Scavarda [89] contains an overview of the topic.

Although this thesis is concerned with mechanical systems, a strength of the ap-

proach is that it can be uniformly applied across the range of physical domains

listed in Table 2.2 as the bond graph approach uses the generic effort and flow

variables to describe a range of physical domains; and thus, we will use "force" in

place of "effort" and "velocity" in place of "flow".

To demonstrate this concept we use the single DOF example of § 2.3.1. Figure 2.14

shows a schematic diagram of the system with its bond graph. The wall excitation

is associated with the force-velocity pair FI-Vl whereas the right-hand side of the

I Domain II Effort I Flow
Mechanical Force Velocity

Mechanical Torque Ang. velocity

Electrical Voltage Current

Hydraulic Pressure Flow rate

Thermal Temperature Entropy flow

Table 2.2: Physical domains
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mass is associated with the force-velocity pair F2-V2. For such systems, each bond

symbol "-," represents such a force-velocity pair; because force x velocity = power,

these symbols are also called power bonds. The direction of the half-arrow shows

the direction regarded as having positive power flow; it thus specifies the sign

convention. The I, C and R components of Figure 2.14{b) correspond the the mass,

spring and damper components of Figure 2.14{a). The 0 junction is a common

force junction (all connected bonds have the same force) and the 1junction is a

common velocity junction (all connected bonds have the same velocity). The two

SS components provide connections to other systems, in this case the wall excitation

and the substructure.

Assuming that vIand F2 are imposed on the system (inputs) and that FI and V2

are the corresponding outputs, the system can be written as a transfer function

as shown in § 2.4.1. However, the bond graph approach does not insist on this

input/output choice; the choice of input and output is associated with the bond

graph concept of causality [86-88]. Because the concept of causality is so important,

the bond graph approach has a special notation: the causal stroke. With reference

to Figure 2.14{b), causality is indicated by a line perpendicular to a bond at the

end of the bond where effort is imposed; flow is imposed at the other end. If the

m
SS:[out]

c
I:m

(a) Schematic (b) Bond Graph

Figure 2.14: Single DOF case study from § 2.3.1

PAGE 52



2.4. NUMERICAL MODELLING TECHNIQUES

causal stroke on the mass, I, were reversed, this would correspond to an improper

transfer function representation, in effect, inverting gravity.

However, one benefit of using bond graphs is that it is not only the numerical model

that can be incorporated. The technique allows us to incorporate other ideas into

the same framework, such as the lag compensation technique described in § 4.4.1.

2.4.3 State-space representation using S-functions

The state-space description provides the dynamics of a system as a set of coupled

differential equations with internal variables known as state variables, together with

a set of algebraic equations that combine the state variables into physical output

variables. The concept of the state of a dynamic system refers to a minimum set

of variables, that fully describe the system and its response to any given set of

inputs I85). A mathematical description of the system in terms of a minimum set

of variables cPi(t), where i = 1, ... ,n, together with knowledge of those variables at

an initial time to and the system inputs for time t 2: to, are sufficient to predict the

future system state and outputs for all time t > to· This definition asserts that the

dynamic behaviour of a state-determined system is completely characterized by the

response of the set of n variables cPi (t), where the number n is defined to be the

order of the system.

Large classes of engineering, biological, social and economic systems may be repre-

sented by state-determined system models. System models constructed with linear

one-port elements (such as the mass-spring-damper elements of the two case studies

of § 2.3) are state-determined system models. For such systems the number of state

variables, n, is equal to the number of independent energy storage elements in the

system. The values of the state variables at any time t specify the energy of each

energy storage element within the system and therefore the total system energy, and

the time derivatives of the state variables determine the rate of change of the system

energy. Furthermore, the values of the system state variables at any time t provide
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sufficient information to determine the values of all other variables in the system at

that time.

In the general case the form of the n state equations is:

¢I - h(cp,r,t),

¢2 - h(cp, r, t),
(2.21)

-

¢n - /n(CP, r, t),
where, rI(t), ... , rp(t) are the system inputs, ¢I(t), ... , ¢n(t) are the state variables

and (Pi = d¢ddt. Each of the functions /i(CP, r, t), (i = 1, ... , n) may be a general

nonlinear, time varying function of the state variables, the system inputs, and time.

It is common to express the state equations in a vector form, thus the set of n

equations in Eq. (2.21) may be written as (p = f(cp, r, t).

We now restrict the a description of the system to be linear and time-invariant (a

system that can be described by linear differential equations with constant coeffi-

cients). For such a system of order n, and with p inputs, Eq. (2.21) becomes a set

of n coupled first-order linear differential equations with constant coefficients:

(PI= aU¢1 + a12¢2+ + aln¢n + bUrl + + bIprp,

(P2= a21¢1+ a22¢2 + + a2n¢n + b2lrl + + b2prp,
(2.22). .. - .

(Pn= anl¢l + an2¢2 + ... + ann¢n + bnlrl + ... + bnprp,

where the coefficients aij and bij are constants that describe the system. Eq. (2.25)

may be written compactly in a matrix form:

¢l an a12 anI ¢l bn bl2 bIn rl

d ¢2 a21 a22 an2 ¢2 b21 b22 b2n r2
dt - +

¢n anI an2 ... ann ¢n bnI bn2 . .. bnp rp
(2.23)

which can be written in vector format as

ci> = Act> + Br, (2.24)
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where the state vector 4J is a column vector of length n, the input vector r is a

column vector of length p, A is an n x n square matrix of the constant coefficients

aij, and B is an n x r matrix of the coefficients bij that weight the inputs.

For the case of substructuring, there is an additional autonomous input from the

force fed back form the substructure. For the single DOF case study of § 2.3.1 we

can rewrite Eq. (3.1) in state-space format as

(2.25)

(2.26)

Thus, Eq. (2.24) is extended to

cb = A4J + Br + C, (2.27)

where C represents the feedback force vector of C = [0 F /mJT from the substruc-

ture. When considering the multi DOF system of § 2.3.2, the number of states

increases to n = 4, where, (h,2,3,4 = [Zl i1 Z2 i2JT. Converting the numerical

model equations of Eq. (2.6) into state space form, the constant coefficient matrices

are given by:

0 1 0 0

_.l!J_ _.£J... 0 0A= ml ml

0 0 0 1

0 0 _k _s
m2 m2

0 0 0 0
_.l!J_ _.£J... 0 0B= ml ml

0 0 0 0

0 0 _k _S,
m2 m2
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0

flc= ml (2.30)
0

.8.
m2

Note, how treating the feedback forces, Fl and F2, as autonomous disturbances the

two numerical models are completely decoupled. Therefore, as the numerical model

outputs act as the demand signals for transfer systems, the control of the transfer

systems is also decoupled.

In order to implement the numerical model in state-space representation in the

context of the real-time architecture (described in § 2.4.4) an S-Function must

be used (in the MATLAB environment). S-Functions are stand-alone C modules,

encoded in a strict function based manner such that they can be compiled into stand

alone dynamic link library (*.dll file) and implemented directly into the real-time

digital signal processor (DSP) during the build and compile phase. The real-time

model data structure encapsulates model data and associated information necessary

to fully describe the model. Refer to Appendix A for an example S-Function of the

multi-DOF case study of § 2.3.2. An additional, but significant, benefit of encoding

the numerical model in a state-space format is that supplementary code can be

embedded into the S-Function. This allows the numerical model to be significantly

more complicated, allowing for nonlinear and conditional behaviour to be specifically

integrated into the model itself, such as found in more complex systems as described

in Chapter 6, Appendix B.

2.4.4 Real-time programming

When people talk about real-time, they generally mean "right away" or "fast". A

standard programme, such as Microsoft Word, that a general computer user might

use, or a text editor that a system programmer might use needs to be fast and

responsive, but if it is delayed now and then it is not that important. Generally,
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we just want things to happen fast, in development terms this is usually described

as LOW-latency. For general-purpose computer systems, "fast" translates to average

Case performance. However, fast does not imply real-time.

A real-time system is one that has deadlines that cannot be missed. For example,

consider the control of a robot arm that lifts partially assembled automobiles from

one assembly station to another. In order to position the arm correctly, the computer

must monitor its movement and stop it precisely 5.2ms after it starts. These timing

constraints make this a hard real-time system, where average case performance will

not do, stopping the arm 7.1ms after it starts one time and 3.4ms after it starts

the next is just not acceptable. Even software that should usually meet timing

deadlines, such as video drivers, can afford a hitch now and then. A missed video

frame will not cause the damage of a missed robot arm control message. In real-time

systems literature (for example, Buttazzo (90]) the text editor is considered to be

non real-time and the video display would be called soft real-time. Only the robot

controller would be called a hard real-time system. The distinctions are as follows:

Hard real-time: An operating system is considered to be hard real-time if all

time constraints imposed by the external world, so-called deadlines, are strictly

met within a predefined tolerance, both for a priori deadlines which can be

scheduled, and for sporadic deadlines such as interrupts, Le. the worst case

must be within the tolerance, e.g. a real-time process is scheduled within a

tolerance of 1ms any time when it ought to and the interrupt response time

for any interrupt issued by a pre-selected device is less than 100j.Ls.

Soft real-time: An operating system is considered to be soft real-time if all time

constraints imposed by the external world, so-called deadlines, are met in a

statistical sense, i.e. the mean value of schedule time deviation is less than a

predefined tolerance, e.g. a process is scheduled within a mean tolerance of

1ms, but it may happen, that sometimes the scheduling delay is bigger.

In the 1980's, hard real-time applications were simple enough to be controlled by
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dedicated, custom, isolated hardware. However, modern real-time applications must

control highly complex systems which are far more general and diverse in purpose.

Furthermore, as demands for speed and quality of service increase, applications that

have never required it before have begun to require hard real-time support. A CD

player that makes a popping sound once in a while is okay for casual listening but is

not acceptable for a professional music editing system. The problem is that to deliver

the tight worst-case timing needed for hard real-time, operating systems need to be

simple, small and predictable. But delivering the sophisticated services that modern

applications need is beyond the capabilities of simple, small, predictable operating

systems. When you try to put real-time inside a general-purpose operating system,

or try to put complex services in a small real-time operating system, you end up

with something that does neither task well and where non real-time services can

interfere with the execution of real-time services.

Therefore, to a implement real-time dynamic substructuring experimentally we have

used a DSP (Digital Signal Processing) processor, specifically the dSpace DSll04

R&D Controller Board running on hardware architecture of MPC8240 (PowerPC

603e core) at 250 MHz with 32 MB synchronous DRAM. This allows the "best of

both worlds" ; all the development of the substructuring algorithm can be done on an

existing non real-time PC with all the benefits of a general-purpose computer system

and all the hard real-time applications handled separately on the DSP processor.

Explicitly, the substructuring algorithm can be designed using the block diagram-

based modelling tool MATLAB/Simulink (which is fully integrated into dSpace

architecture) and then compiled and built into the dedicated DSP hardware once

complete. During the compiling phase the substructuring algorithm is stringently

validated for programming violations before being built into the DSP processor

where it is checked for any hard real-time violations. The dSpace companion software

ControlDesk is used for online analysis, providing soft real-time access to the hard

real-time application on the general-purpose computer. In this way the developer has

all the advantages of using a standard PC but can ensure hard real-time constraints.

PAGE 58



2.5. SYNCHRONISATION THEORY

2.5 Synchronisation theory

Synchronisation subspace plots are used to show the effectiveness of the control

algorithm, the local error, by plotting the actual verses the desired responses in

a 2D vector space, [91J. A subspace plot shows the amplitude accuracy and the

magnitude of delay of the transfer system coupled together at anyone time. Perfect

synchronisation is represented by a diagonal straight line with maxima and minima

of the reference signal. Any reduction in synchronisation is seen as a deviation

from this idealized line. For periodic wall excitation conditions these plots build

up into a repeating pattern, which can appear complex. However, the individual

components of amplitude and delay produce their own specific and identifiable

patterns if evaluated separately.

The result of varying the amplitude accuracy is to change the angular orientation

of the subspace plot compared to the idealized line. Figure 2.15 shows the result

of increasing amplitude accuracy from a 0% to 25%, 50% and then 75% of perfect

synchronisation. Continuing this trend, the angular orientation further increases to

a limit of a 900 (vertical) line which is the outcome of an infinite plant response.

(a) Time Domain
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Figure 2.15: Effect of increasing amplitude accuracy with zero delay.
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(a) Time Domain (b) Synchronisation Subspace
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Figure 2.16: Effect of increasing delay with perfect amplitude accuracy.

The consequence of introducing a constant delay between the reference signal and

the plant response is to transform the idealized straight line into an ellipse (anti-

clockwise implies negative damping, clockwise implies positive damping) as shown

by Figure 2.16(b). The greater the delay, the larger the width of the minor axis of

the ellipse, with the change being proportional to the delay magnitude. If the delay

is not constant through one period, then the ellipse no longer has a uniform shape.

In a typical subspace plot however, the effect of amplitude and delay are coupled

together with both being able to vary independently through a single period and

thus producing more complicated patterns. Therefore, a typical subspace plot for

a transfer system following a given reference signal under proprietary control is

more closely related to that shown in Figure 2.17. The linear proprietary controller

is designed to reduce uncertainty such that we can achieve a repeatable dynamic

response from the actuator. Here, we can see a high amplitude accuracy with a

relatively constant delay which increases for a short time after each peak is reached

(the actuator deadzone). For multi transfer system substructuring (when significant

cross-coupling between the numerical models can be generated) or for more complex

excitation conditions the reference would no longer be a single sinusoid. Figure 2.18
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Figure 2.17: A typical subspace plot for a single actuator being sinusoidally

Controlled using a P controller.

shows a typical subspace plot for a compound sinusoid when the transfer system

is under high demand. The compound sinusoid reference results in the idealized

diagonal line changing in length according to the maxima and minima of the current
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Figure 2.18: A typical subspace plot for multi transfer system substructure test

controlled using a P controller.
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part of the signal. The magnitude of both accuracy measures now varies considerably

during each period.

Although the subspace plots become increasingly complex as the system becomes

realistic, the visual interpretation remains constant. Simple linear controllers can be

tuned online without performing any further system identification and the adapt ion

characteristics of adaptive controllers can be viewed as they happen by observing

the specific shape of the subspace plot. Additionally, this gives the user an initial

and instant guide to the accuracy of an individual test and where the potential

sources of errors may lie before any detailed post process procedures are carried out.

This can be extremely useful in gaining a greater understanding of the experimental

characteristics and limitations along with highlighting the major contributing factors

that limit the level of synchronisation.

2.6 Effect of delay errors in the substructuring algorithm

There is an important difference between the difficulties faced in a standard control

problem to that faced when performing substructuring. For substructuring, the

reference signal (i.e. the control demand) for each transfer system is not known at

the start of each time step as in a normal control problem, but must be created

in its respective numerical model during each time period. A small delay in the

transfer system response introduces a corresponding error in the feedback force

vector, as shown described in § 2.3.1 and § 2.3.2, which can be thought of as

adding negative damping to the system [61]. This discrepancy has the effect of first

reducing the accuracy of the numerical models (compared to the emulated system)

until the magnitude of the synchronisation delay increases to such a degree that a

sign change for the damping of the overall system occurs. At this point instability

of the substructuring algorithm is observed and is characterized by the onset of

oscillations with exponential growth [69].

Therefore, the aim of the control algorithm is to achieve synchronisation between the
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desired interface displacement of the numerical models, z, and the actual position

of the transfer systems, x. However, under just the inner-loop linear control of the

proprietary controller, a transfer system will always be subject to some form of delay,

T, which can either be characterized as a pure delay or as a frequency dependent

delay (lag) depending on the type of actuator. In fact the nature of this delay error

in the substructuring algorithm can be represented by two coupled components (as

introduced § 2.1). For the single DOF example of § 2.3.1 we can express the error

as

(2.31)

where, el is a function which describes the accuracy of the numerical models com-

pared to the appropriate variable in the complete emulated system (the numerical

model error):

el = (z* - z), (2.32)

and e2 represents the degree of synchronisation between each transfer system and

its numerical model (the local control error):

e2 = (z - x). (2.33)

Therefore, by combining el and e2 we can get a global measure of the accuracy of the

substructuring test which relates the emulated system coordinates z" to the actual

displacement of the transfer systems z: However, when substructuring complex

systems it is not possible to compute z", and the only measure of accuracy is the

degree of synchronisation e2.

As previously stated, the numerical model coordinates z are, in effect, a delayed

function of the transfer system x (as the force vector F will be subjected to the

same delay T as the transfer system), such that

z = f(r(t}, x(t - T)), (2.34)

This highlights the nature of the coupling between el and e2' In the ideal case,

achieving perfect synchronisation by removing the delay T from the transfer systems
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will result in e2 -+ O. This in turn will mean that the correct force vector F(t) will

be added into the numerical models at the correct time, such that el -+ 0 and

the substructured system will replicate the dynamics of the emulated system. This

argument allows us to propose the following:

Proposition 1 If the synchronisation error, e2 = 0, for all time t ~ 0 during a

substructuring test then x = z and el = 0 such that the substructured model exactly

replicates the dynamics of the emulated system.

However, in practice the synchronisation error, e2, can never be exactly equal to

zero in a real substructuring test so the practical interpretati.on of Proposition 1 is

that as e2 -+ 0 the substructured model more closely replicates the dynamics of the

emulated system. The significance of Proposition 1 is that it gives an indication of

the accuracy of a substructured system using the only measurable quantity of error

e2, the local control error.

We can see the practical implications of Proposition 1 by observing the results from

numerical simulations of the single DOF substructured system. Figure 2.19 shows

three such tests with varying amounts of modelled transfer system delay. Figure 2.19

(a) shows the case for zero synchronisation error, as can be seen from the subspace

plot in Figure 2.19 (a2). As expected, as there is zero numerical model error (el = 0

as e2 = 0) the substructured dynamics exactly matches that of the emulated system.

As the modelled transfer system delay is increased (e2 ¥- 0) we see a resulting error

in the numerical model (el ¥- 0) as shown in Figure 2.19 (b) and (c). As can be

seen from Figure 2.19 (b2) and (c2), there is a consistent level of synchronisation

throughout the entirety of each simulation. However, the dynamical response of

the numerical model in Figure 2.19 (bl ) and (cl) are significantly different. When

the modelled delay is 6ms (Figure 2.19 (b1)), we observe a stable numerical model

with a bounded error, however, when the delay is increased to 7ms (Figure 2.19

(cl)) exponentially growing oscillations are observed. Thus, we can infer that the

critical delay, Tc, occurs at some point between these two delay magnitudes for
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Figure 2.19: Effect of delay on a substructuring algorithm; numerical simulation of

the single DOF substructured system from § 2.3.1; System parameters: m::::: 2.2kg,

k :::::ks :::::2250N/m, c :::::15Ns/m. Magnitude of modelled (pure) delay, Panel: (a),

T :::::Oms; (b), T :::::6ms; (c), T = 7ms.

this substructured system with the system parameters as given in the caption for

Figure 2.19. From an accuracy standpoint alone it is clear that the primary control

objective should be to minimize e2, however the size of the delay T also has a

significant effect on the stability of the substructuring algorithm as a whole. Any

error in e2 will result in a corresponding error in el and thus propagate to th

next time step leading to potential instability of the substructuring algorithm. The
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concept of stability for a substructured system is discussed in detail in Chapter 3.

It is a fact that the stiffer the system or the lower the damping in the substructured

system the harder the controller must work to retain stability. For this reason,

robustness is an essential consideration for this type of testing. In Chapter 5 we

apply tools from control theory to study the robust stability of the simple case

study systems. In particular we focus on the effect of unmodelled delays and other

uncertainties which occur during substructuring. This allows us to develop the

concept of a robust transfer system design methodology that can be consistently

applied to any generic substructuring system.

2.7 Conclusion

In this thesis we consider the hybrid experimental-numerical testing technique known

as real-time dynamic substructuring. The technique involves creating a hybrid

model of the whole system by combining an experimental test piece with one or

more numerical models describing the remainder of the system. The virtual testing

environment produced mimics the dynamic characteristics of the complete system if

done correctly. As only part of the structure is experimentally tested it allows

engineers to view the behaviour of critical elements under dynamic loading at

full scale. In this chapter we have introduced a number of critical areas which

need to be carefully designed into a comprehensive testing strategy in order to

achieve successful testing. Chapters 3 to 5 discuss these in depth using the small

scale case studies of § 2.3.1 and § 2.3.2 to demonstrate the fundamental principles

behind the experimental side of substructuring. So far the technique has been

developed successfully using expanded time scales, known as PsD. As testing is

carried out quasi-statically, any time-dependent behaviour of the test specimen is

lost. Implementing the substructuring process in real-time means that the damping

and inertial components of the substructure dynamics are retained.

The issue for substructuring is that as the complete system is split up into its
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constituent parts, a controlled system must be employed to exert the influence of

the numerical model(s) on the substructure. This influence is obtained through the

use of transfer system(s) acting directly on the substructure, which are controlled to

follow the appropriate output from each respective numerical model. Delays arise

naturally as it is not possible for any controlled system to react instantaneously to a

change of state as prescribed by the numerical model, resulting in the overall delay

of the transfer system, T. In a standard control problem this would not be a critical

issue, only one of accuracy, but as the force(s) between the transfer system(s) and

the substructure are fed back into the numerical model(s) at the same time this gives

a form of bi-directional coupling. In some situations the transfer system delay may

be so small as to be negligible, but the typical situation in substructuring is that this

delay is large enough to have a significant influence on the overall dynamics of the

substructured system. The stability criterion, the maximum (or critical) transfer

system delay, Tc, for a substructured system is discussed in detail in Chapter 3.

It is therefore an essential condition that the transfer system delay is less than

the critical delay in order to ensure that the substructured algorithm is stable. In

Chapter 4, we present two strategies for compensating for the transfer system error,

by either characterising it as a pure delay or as a lag (dependent on the frequency

of excitation). This highlights how the experimental side of substructuring can be

viewed as a control problem, although unconventional.

For complex substructured systems, or those that have a small critical delay, the

harder the outer-loop controller must work to retain stability. For this reason,

robustness is an essential consideration for this type of testing. In Chapter 5 we apply

tools from control theory to better understand the robust stability of a substructured

system which allows us to develop the a methodology that can help achieve successful

testing for any generic substructuring system.

The knowledge gained from these experiments is then applied to an industrial

example of substructuring in Chapter 6, where it would be impossible to understand
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the direct influence of the substructure on the entire system in any other way.
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Chapter 3

Stability criteria for a

substructured system

SUMMARY: This chapter presents the concept of stability in terms

of a real-time substructuring algorithm. The delay errors (due to the

inner-loop control of the transfer systems) are firstly shown to reduce

the dynamical accuracy of the numerical model(s) before instability is

observed at the point where the critical limit is reached, characterized

by the onset of oscillations with positive exponential growth. We present

two approaches to calculating the critical limit of stability for a given

system.

3.1 Introduction

The focus of this chapter is on the principle of stability for a given substructured

system. The aim is to develop an understanding of the effect of delay errors that

are always present in a substructuring algorithm. This has been briefly discussed in

§ 2.6 in general terms, here we express a formal argument about the stability criteria

for any given substructured system.

Delays arise naturally, because it is not possible for any controlled plant to react
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instantaneously to a change of state as prescribed by the numerical model. There are

a number of different delays which combine together to give the overall delay of the

transfer system (including data acquisition, computation, digital signal processing

and the actuator delay itself) which are combined into one overall synchronisation

error, the local error e2 as described in § 2.6. This synchronisation error describes

both the delay magnitude and the amplitude error of the closed loop response of the

actuator (resulting from the inner-loop proprietary controller). In some situations

the transfer system synchronisation error may be so small as to be negligible, but

the typical situation in substructuring is that the delay is large enough to have

a significant influence on the overall dynamics of the substructured system. The

influence is due to the fact that the experimental force(s), that are fed back from the

substructure into the numerical model(s), are also delayed by the same magnitude

as the transfer system(s) (assuming no filtering of the measured signal) and change

the control demand for the next time step. An important criterion for this type of

delayed system is its bounds of stability which are defined by the system parameters

and the delays within the system. The limit of stability is defined by the critical

delay, Tc. As stated in § 2.1, if the response delay of the transfer system, T, is of such

a magnitude that it goes past this critical limit, Tc, then the numerical model will

become unstable and is characterized by a function of positive exponential growth.

This is called the delayed critical limit and is the most significant in terms of the

substructuring algorithm. However, as shown in § 2.1 Table 2.1, there is also a

forward critical limit, TI, which only becomes important in context of the delay

compensation scheme employed and is discussed in Chapter 5.

A number of techniques have been proposed to assess the stability of a substructured

system. Horiuchi et al. [61]used an energy analysis of periodic orbits to equate the

time delay to a form of negative damping with instability occurring at the point of

sign change for. the damping of the overall system. However, a limitation of this

approach was that the form of the transfer system displacement x and the feedback

force F needed to approximated to harmonic functions. Lim et al. [72] examined
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how the poles of a substructured system, and therefore its stability, are effected

by changing the magnitudes of a fixed gain version of an adaptive controller in

continuous time. In a similar vein, Darby et al. [73] studied the position of the

discrete closed-loop poles of a multi DOF system under the influence of two variable

delays. Stability is determined by whether or not the poles lay within the unit circle.

Wallace et al. [69] employed the method of modelling the substructured system

with delay differential equations (DDEs), which are derived from the ODE model of

the system by explicitly including the delay(s) due to the transfer system(s). The

advantage of DDE modelling is that powerful analytical and numerical methods can

be used to determine the stability of the DDE model and, hence, of the substructured

system. This technique is discussed in depth in § 3.2. Finally, Gawthrop et al.

[74] applied tools from control theory to study the robust stability of a generic

linear substructuring system. This phase margin approach provides a measure

of how near to instability the ideal system is in terms of how much phase lag is

permissible. This disadvantage of this approach is that the substructured system

must be approximated to a linear transfer function. However, it can be readily

Used for the class of systems for which the DDE methods cannot or when it is

impractical to use other techniques, giving it considerable advantages in terms of

practical implementation. This technique is examined in § 3.3.

3.2 Delay differential equation models

The method we employ here is to model the substructured system with delay

differential equations (DDEs), which are derived from the ODE model of the system

by including explicitly the delay(s) due to the transfer system(s) [69]. A DDE model

is a system of differential equations that depend on the current state of the system

and on the state of the system some fixed time T ago. As a general reference to the

theory of DDEs see, for example, Diekmann et al. [92] or Stepan [93]. The advantage

of DDE modelling is that we can use powerful analytical and numerical methods to
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determine the stability of the DDE model and, hence, of the substructured system.

Specifically, the loss of stability as a function of increasing delay is typically observed

in substructured systems by the onset of oscillations. Because this corresponds in

the DDE model to a pair of complex conjugate eigenvalues with zero real part,

it is possible to determine the critical delay time Tc, above which the system is

unstable. Depending on the system under consideration, this can be done either by

considering the characteristic equation for the eigenvalues of the DDE [92, 93] or

with the numerical tool DDE-BIFTOOL [94].

To introduce the technique we use the single DOF example of § 2.3.1 and therefore

restrict the system to the case of a single fixed delay T. The origin of the delay

in terms of the transfer system is identified in § 2.6 and we show in § 3.2.1 how

the delay explicitly appears in the feedback force from the substructure. We can

then use this DDE to ascertain stability in a number of different ways. Firstly,

a perturbation analysis of the characteristic equation (under the assumption of

small delay) can be used to compute an approximate expression of the critical time

delay Tc. Because the system in question is linear and quite simple, we can also

compute explicit expressions for Tc by computing the purely imaginary complex

roots directly from the characteristic equation. In § 3.2.5 we extend this framework

to consider several delays for the multi DOF example of § 2.3.2. Although it is

still possible to compute the explicit solution for this linear system it becomes

increasingly cumbersome. Therefore, we demonstrate how the stability regions can

be computed numerically with the mathematical tool DDE-BIFTOOL [94] in order

to validate the approach. Because this software does not require any special property

of the governing equations, § 3.2.3 demonstrates how we can find Tc in a general

situation of more complex and nonlinear substructured systems.

Whatever the choice of the inner and outer-loop controllers the controlled system

can again be modelled by a DDE, generally by modifying the DDE model which

now contains additional parameters describing the controller. The stability of this

new DDE model can be analysed efficiently for the dependence on the controller pa-
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rameters. This knowledge can then be used to help develop robust control strategies

which is studied in detail in § 5.5.

3.2.1 The substructured system

We consider the example of the single DOF mass-spring oscillator system of § 2.3.1.

This well known linear system will allow us to demonstrate the fundamental prob-

lems associated with the occurrence of delay in a substructuring algorithm. From

Figure 2.4 (§ 2.3.1), we see that the dynamics of the numerical model is governed

by

mz + c(i - r) + k(z - r) = P, (3.1)

where the feedback force, P, is the substructure response of P = -k8X and is treated

as an external disturbance in the numerical model in order to simplify integration.

As the transfer system has its own dynamics, it cannot react instantaneously and

thus introduces the inevitable time delay. This means that

x(t) = az(t - r), (3.2)

for some positive r, where a is the amplitude accuracy of the closed loop response

of the inner-loop controller. Note also that here we ignore any additional effects of

physical disturbances and any transient nonlinear behaviour of the transfer system.

For the moment, assuming a unit gain response from the transfer system (a = 1), the

delay r introduces the systematic synchronisation error z(t) - x(t) = z(t) - z(t - r)

into the substructuring algorithm. Proposition 1 (§ 2.6, [75]) conjectures that, in

general, the substructured system z(t) approximates the emulated system z*(t) if

this synchronisation error is small", that is, z -+ z" if x -+ z, Therefore, it is natural

that the synchronisation error, e2 (or local control error § 2.6), is a crucial measure

for the accuracy of the substructuring experiment and, in fact, is the only explicit

measurement of accuracy available for complex systems.

lThis is the case in Hardware-in-the-loop testing, where because of the structure of the system

being tested, the transfer systems have no dynamics.
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We call the substructured system unstable if the synchronisation error grows expo-

nentially in time and we call it stable if the synchronisation error remains bounded.

As a result, when the synchronisation error is non-zero, the force is also described

by a delayed state of the numerical model,

F = -ksaz(t - T). (3.3)

The overall substructured system is then governed by Eq. (3.1) with Eq. (3.3), which

constitutes a delay differential equation (DDE) that can be written as

mz + cz + kz + ksaz( t - T) = ci + kr . (3.4)

We can now perform a detailed study of the substructured system Eq. (3.4) in order

to determine the critical delay Te above which the system is unstable.

3.2.2 Explicit stability analysis

Using Eq. (3.4) with r = f = 0 and x(t) = az(t - T) we obtain the complimentary

equation

mz + cz + kz + ksaz(t - T) = O. (3.5)

This can be expressed with non-dimensionalized parameters as

d2z dz
-;:-'2 + 2(-~ + z + pz(t - T) = 0,
dt dt

(3.6)

where

wn=~'
ak,

P=T'
c

( = 2.;r;:ik·

(Parameters values: ml = 2.2 kg, k = k, = 2250 Nm-1 and c = 15 Nsm=l.)

The introduction of a delay term into a linear ordinary differential equation (ODE)

has two effects. First, it changes the spectrum of the ODE by a perturbation of

order T. Second, it introduces infinitely many new modes. If the delay is small,

the new modes are all strongly damped and the perturbation of the ODE spectrum
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can be expanded in the small parameter T. This perturbation analysis is often

easier to perform analytically than the search for all complex roots of the typically

transcendental characteristic equation of the full DDE. For the parameters stated

above the assumption that T is small is valid. Thus, we pursue both approaches and

compare the perturbation analysis with the full root analysis of the characteristic

equation of Eq. (3.6).

Firstly, searching for solutions of the form z = Ae>'i, Eq. (3.6) can be written as

(3.7)

which leads to the characteristic equation for the system of

(3.8)

The complex roots Ai of Eq. (3.8) are the system eigenvalues, the sign of their real

parts determines the stability of the system. The majority of large structures are

lightly damped thus ( is small. We may assume that f is small and expand e->.f to

its first order extrapolation of 1 - Af. Using this approximation, Eq. (3.8) becomes

A2 + A(2( - pf) + (1 + p) = O. (3.9)

Solving for A gives the roots

Al,2 = -~(2( - pf) ± ~v'(2( - pf)2 - 4(1 +p), (3.10)

which governs the dominant eigenvalues for the DDE system given by Eq. (3.4) when

i « 1. When f = 0, Eq. (3.10) reduces to the eigenvalue equation for a standard

underdamped spring-mass-damper system, for which the eigenvalues are complex

and stable for positive values of rn, c, p. Additionally, we note that (, Wn and Tare

Positive quantities. Thus, because f is small, we can make the assumption that the

eigenvalues remain complex, i.e. 4(1 + p) > (2( - pf)2. Therefore, the real parts of

the eigenvalues from Eq, (3.10) determine the overall stability, such that the system

is stable only if pf < 2(. Converted back to the original parameters this means that
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the system is stable if the transfer system delay T is less than the critical value

2( C
Te=-=-·PWn ak,

(3.11)

This expression highlights that for lightly damped, stiff structures Te will be small

and consequently the control algorithm must work harder to maintain stability. As

the response delay, T, increases past Te the real parts of the eigenvalues become

positive and result in the transition of a pair of complex conjugate eigenvalues

from the left to the right hand plane. This transition is called a Hopf bifurcation

and entails the creation of (small) oscillations. Hopf bifurcations are a well know

phenomenon in the context of DDEs [93, 95-97].

A previous analysis of the effect of time delay in substructuring [61]used an energy

analysis of periodic orbits to equate the time delay to a form of negative damping.

Eq. (3.11) clearly demonstrates how this negative damping manifests itself. In fact,

the equivalent negative damping term can be expressed as cneg = -aksT, with

instability occurring at the point of sign change for the damping of the overall

system. We note that as the transfer system response increasingly overshoots the

numerical model demand the amount of negative damping also increases, and thus,

reduces the margin to instability. Therefore, the amplitude accuracy of the transfer

system response can also be seen as a form of negative damping, effectively stiffening

the substructured system when it overshoots the demand.

The second approach to determining the stability boundaries of Eq, (3.6) is to search

for points in the parameter space where the characteristic equation, Eq. (3.8), has

purely imaginary solutions, that is, just undergoes a Hopf bifurcation. This analysis

is valid not just for small T but for any value of T; see Gilsinn [96] and Larger and

Goedgebuer [97] for similar approaches. Specifically, the stability boundaries are

found in the parameter space by searching for solutions of the form z = Aejwt =

Ae3wi where w = ::,.is a positive real number (0 cannot be a characteristic root in

this case). We insert w into the characteristic equation, Eq. (3.8), to obtain

_w2 + 2(wj + 1 + pe-jwf = O. (3.12)
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Splitting Eq. (3.12) into real and imaginary parts gives a system of two real equa-

tions:

o - l-w2+p cos(wf)

o - 2(w - p sin(wf)

for the real part,

for the imaginary part.

(3.13)

(3.14)

We use the Equations Eq. (3.13) and Eq. (3.14) to express the parameters as

fUnctions of w. In this way, we can identify all points in the parameter space where

the DDE has purely imaginary eigenvalues and, thus, changes stability (at a Hopf

bifurcation). Dividing Eq. (3.13) by Eq. (3.14) we get

A2 1
(A A) W-

cot WT = 2(W . (3.15)

The cot function is periodic, therefore

1 (W2 - 1) 2117T
f = w arccot 2(w + w ' (3.16)

where n is an integer, is satisfied on the stability boundary. If arccot is to be taken

between 0 and 7l' then n has to be non-negative since f is positive. Squaring and

adding the equations Eq. (3.13) and Eq. (3.14) and rearranging for p (taking into

account that p must be positive) we get

(3.17)

Figure 3.1(al) shows the curves for n = 0 to n = 6 (up to the limit of f = 30)

of the infinite solution set for the critical parameter pairs (f, p) in the (f, p )-plane

with ( fixed at 0.1066. These curves are parameterized by w running from 0 to +00
in equations Eq. (3.16) and Eq. (3.17). Along these curves the system has a pair

of purely imaginary eigenvalues and, hence, gains one additional unstable mode.

Along the line f = 0 the system is stable. Consequently, always the lowest parts of

the curves define the stability boundary; the grey area is the region of stability. For

comparison we have inserted into Figure 3.1(al), as a dashed curve, the stability

boundary obtained from the perturbation (approximate) analysis Eq. (3.11). As
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(a1) Nondimensionalized Solutions for Variable Substructure Stiffness (a2) Experimental Region

1 ,.
0.8 0.998

,.,.
0.6 0.996 \

n=O
c. ,.

0.4 0.994 \

0.2 0.992 -exact., Stable Region , - , - approximate"-0
...... _.

0.99
0 5 10 15 20 25 30 0.21 0.215 0.22

TWn = 7 TWn = 7

(b1) Nondimensionalized Solutions for Variable System Damping (b2) Experimental Region

0.3.
Stable Region

0.8
, 0.25.

0.2
0.6

U' 0.15

0.4
0.1

0.2 0.05
, - , - approximate

0
5 10 15 20 25 30 0 0.2 0.4 0.6 0.8

TWn =7 TWn =7

Figure 3.1: Non-dimensionalized Hopf stability boundaries of the DDE Eq. (3.6)

for variable response delay T. Fixed parameters: (= 0.1066 in panels (a) and p = 1

in panels (b).

stated earlier, it can be seen that the approximation only holds for small values of

the delay. Further more it is a slight underestimation of the explicit solution as the

higher order terms are not included in the approximation. Figure 3.1 (a2) shows an

enlargement of the region where the ratio of the spring constants has a value of p = 1

for which the experimental testing is performed in § 3.4. The non-dimensionalized

critical value fe can be read off as fe = 0.2165, from which the critical time delay

can be computed as Te = 6.77 ms.

To obtain the critical delay fe and ( for fixed p as parametric curves in the (f, ()-

plane we rearrange Eq. (3.13) for f and Eq. (3.17) for (, thus expressing the critical
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f and ( as functions of wand p {taking into account that f and ( must be positive):

1 (W2-1) 2mr
'T = -;:-arccos + -A-,

w p W
(3.18)

(3.19)

where w runs from vmax{O,l - p} to VI + p, and n is any non-negative integer

if arccos takes values between 0 and it, Figure 3.1{b1) shows the stability region

(grey) and the critical values of f and ( for fixed p = 1 using the curves defined

parametrically by equations Eq. (3.18) and Eq. (3.19). The primary curve with f for

n = 0 is always the stability boundary in the {f, ()-plane. Again, we have inserted

into Figure 3.1{b1) as a dashed curve the approximate stability boundary given by

Eq. (3.11) that was obtained from the perturbation analysis. This curve is only

accurate for systems which are lightly damped with a maximum of approximately

15% damping for this structure, which can be seen from the enlargement of the

experimental region in Figure 3.1{b2). Figures 3.1{a1) and 3.1{b1) also highlight

that there are 'stable' parameter regions. These are regions where the system is

stable regardless of the delay f. We can compute the boundaries of these regions by

rearranging Eq. (3.17) for W,

(3.20)

The right-hand-side of Eq. (3.20) is never real if p < Pmin = 2( VI - (2 = 0.212

(discriminant negative), giving rise to the stable region in Figure 3.1(a1). Moreover,

the right-hand-side cannot be positive if p ~ 1 and ( > ..;2/2 = 0.7071, which

accounts for the stable region in Figure 3.1(b1) for the specific case ks = k (p = 1).

We note that the vast majority of structures, especially in the civil engineering field,

are lightly damped such that operating in the region of stability for all f would be

extremely unlikely. However, when substructuring mechanical components, such as

in Chapter 6, other parts of the stable region are likely to be accessible.
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3.2.3 Numerical stability analysis

For more complex DDEs than Eq. (3.6) it may become impossible to find stability

regions as shown in Figure 3.1 by analytical calculations. We therefore move to a

numerical approach for finding the stability regions when the substructured system

is complex or nonlinear. In this section, we use a mathematical tool called DDE-

BIFTOOL to demonstrate how this numerical analysis may be applied. DDE-

BIFTOOL is a collection of Matlab routines for numerical bifurcation analysis of

systems of DDEs with multiple fixed, discrete delays and is freely available for

scientific purposes. A full description of the algorithms used within the DDE-

BIFTOOL package and its limitations is given by Engelborghs et al. [94].

We used DDE-BIFTOOL to find the critical delay Te where the first Hopf bifurca-

tions occurs and the substructured system destabilizes. Figure 3.2(a1) shows the

real parts of the roots of the characteristic equation, Eq. (3.8), for the substructured

system as the delay T is increased (shown up to T = Is). The system is stable when

all roots are in the left half plane, that is, none of the curves are above zero. The first

Hopf bifurcation takes place when the dominant branch crosses the dashed line where

Re(A) = O. As can be observed from the enlarged view in Figure 3.2(a2), stability is

maintained until the response delay reaches the critical value of Te = 6.77ms. This

agrees with the value found in the explicit stability analysis in § 3.2.2.

The zero roots can be followed to see the effect of varying the structural param-

eters on the stability of the substructured system in terms of the critical delay.

Figure 3.2(b) shows the stability boundary given by Te when the spring stiffness is

varied. As expected, the boundary obtained with DDE-BIFTOOL agrees with that

in Figure 3.1{al}. Note that the minimal value of the curves is observed at ks = 477

such that p = 0.212. Figure 3.2(c) shows the stability region, bounded by Te, for

changing system damping of the numerical model. Again, we have agreement with

the result found from the characteristic equation shown in Figure 3.1(b1). As the

damping coefficient increases to c = 99.5 we see that the stability boundary reaches
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Figure 3.2: (al ) Real part of complex roots of the substructured system computed

using DDE-BIFTOOL with enlargement of the critical region (a2). Hopf bifurcation

diagram showing the stability region for, (b) variable substructure spring stiffness k;

(c = 15Ns/m), and (c) variable system damping c (ks = 2250N/m). Other system

parameters: m = 2.2kg and k = 2250N [tt».

an asymptote corresponding to a system damping of ( = 0.7071.

Overall, the results in this section agree with the explicit stability analysis in

§ 3.2.2. This demonstrates the potential of the numerical stability analysis with

DDE-BIFTOOL, with the added advantage that it works also for far more complex

and nonlinear systems. This will be further examin d in § 3.2.5 and § 5.5.
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3.2.4 Simulation of a pure delay

To demonstrate how the delay induced instability analysed in § 3.2.2 and § 3.2.3

manifests itself in an experiment, we first produce time domain and frequency

response diagrams in numerical simulation. These simulations will allow us to

idealize the dynamics of the transfer system as a pure unit gain response with a

constant time delay. This approach isolates the delay induced error which causes the

instability from other parasitic experimental effects, such as static friction, backlash

and noise. This allows us to observe some of the characteristic features of the

substructured system in isolation. It also gives us full control over the structural

parameters and the size of the delay. In the simulations Eq. (3.4) is integrated by a

fourth-order Runge-Kutta algorithm with a step size of 1ms.

Figure 3.3{a) shows a simulated substructure test where the response delay is T =

7ms, which is just larger than the critical delay of Te = 6.77ms. When T < Te the

numerical model error is "small" and bounded. However, when this critical value

of Te = 6.77ms is exceeded then the error is unbounded and grows exponentially -

the overall system damping is effectively negative [61]. This situation is shown in

Figure 3.3{b), ignoring the additional transient effects at the start of the simulation.

Since the response delay is only just larger than Te in this instance, the growth

coefficient is very small. We can observe the growth coefficient from Figure 3.2{a).

In this case the magnitude of the eigenvalue at the specific delay is /R{oX) = 0.105 at

T = 0.0078.

Additionally, we observe that the frequency at which instability occurs is constant

and independent of the excitation frequency. Figure 3.4 shows the magnitude

of the numerical model response over the experimental range of frequencies for

an increasing simulated response delay T for a test duration of 5 seconds. The

excitation frequency in this example is 3Hz at constant amplitude. Instability occurs

at a frequency of approximately 7.1Hz and grows with the expected exponential

coefficients for varying T. We can approximate the instability frequency, WI, from
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(a) Comparison of Emulated Dynamics (z") to that of the Numerical Model (z), 't = 7ms
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Figure 3.3: Simulation of numerical model accuracy caused by a transfer system

delay of T = 7ms in the substructuring algorithm (where, Tc = 6.77ms).

Eq. (3.10) using the perturbation analysis at the point of instability, pi = 2(, such

that Ai = j y'1 + p. Removing the non-dimensionalization,

{k+k;
WI = AiWn = V --:;;;:- = 7.198H z, (3.21)

for this experimental setup. We can find a more accurate value for this instability

frequency from the complex root solutions at n = O. From Equation (3.20) for the

case where p = 1 and at the point of instability,

WI = wnV(2 - 4(2)2 = 7.116Hz. (3.22)
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12

4 6
Response Delay, 't (s) Frequency (Hz)

o 0

Figure 3.4: Exponential growth of instability independent of the 3Hz excitation

frequency (5s test data).

3.2.5 Multi DOF analysis

We now consider the example of the multi DOF mass-spring oscillator system of

§ 2.3.2. The substructured system is shown in Figure 2.6 and the dynamics of the

numerical model given by Eq, (2.6). Due to the fact we can write down explicit

equations of motion for the substructure in this case, we know the emulated force

feedback, F* = [F; F;jT, at every time interval.

For this analysis, we make the assumption that the two transfer systems have

identical dynamics such that there is only one fixed delay, T, in the system and that

we achieve a unit gain response from each transfer system. Therefore, Xi = z; (t - T)

where i = 1,2,3 which gives an actual force feedback of

FI = c3dz3(t - T) - ZI(t - T)] + k3dz3(t - T) - ZI(t - T)],

F2 = C32[Z2(t - T) - Z3(t - T)] + k32[Z2(t - T) - Z3(t - T)],
(3.23)
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from Eq, (2.7). The overall substructured system is then governed by Eq. (2.6) with

Eq, (3.23), which constitutes a coupled delay differential equation (DDE) that can

be written as

mlZl + ClZl + klzl + c3dzl(t - T) - Z3(t - T)] + k3dzl(t - T) - Z3(t - T)]

= clrl + kITI,

m2z2 - C2Z2 - k2z2 - C32[Z2(t - T) - Z3(t - T)] + k32[Z2(t - T) - Z3(t - T)]

= -C2r2 - k2T2.
(3.24)

We can now study the substructured system of Eq, (3.24) in order to determine

the critical delay Tc above which the system is unstable. However, due to the

damper components in the substructure, which will also be affected by the transfer

system delay, this becomes a second-order DDE. Additionally, without making the

assumption that the middle mass is stationary, such that Z3 = Z3 = 0, the explicit

analysis becomes complex and impractical, [98].

We therefore remove the need to make any simplifications by again utilizing the

mathematical tool DDE-BIFTOOL ([94]) to find the critical delay Te. For simplicity

we study the symmetrical system of m = ml = m2 = m3 = 2.2, k = kl = k2 =

k3l = k32 = 4750N/m and C = Cl = C2 = C31 = C32 = 6Ns/m. The actual values for

the system parameters makes no difference in the application of DDE-BIFTOOL,

just the number of delay within the system. Figure 3.5 shows the real parts of the

roots of the characteristic equation, Eq. (3.24), for the substructured system as the

delay T is increased (shown up to T = 0.05s). As before, the system is stable when

all roots are in the left half plane (none of the curves are above zero), therefore

instability occurs at the first Hopf bifurcation - when the dominant branch crosses

the dashed line where Re(>.) = O. As can be observed from the enlarged view in

Figure 3.5(b), stability is maintained until the response delay reaches the critical

value of Te = 2.502ms.

We note that this stability criterion is only valid for case where the actual transfer

system delays, Tl and T2, are equal. The analysis, by DDE-BIFTOOL, could now be

PAGE 85



CHAPTER 3. STABILITY CRITERIA FOR A SUBSTRUCTURED SYSTEM

0.5
3: 3:
Ql Ql
Cl: Cl:

0

-0.5

-1
0.01 0.02 0.03 0.04 0.05 0 0.001 0.002 0.003 0.004

r (s) r (s)

(a) Real part of characteristic roots (b) Enlargement near tc
1.5 r---~-~-..----''----"

t = 2.S02ms:c .

Figure 3.5: (a) Real part of complex roots of the substructured system computed

using DDE-BIFTOOL with enlargement of the critical region (b).

extended to encompass the substructured system with independent variable delays

such that T1 =1= T2; this is a potential line of future research, see § 7.2.

3.3 Phase margin approach

As pointed out previously in Chapter 2, substructuring can be viewed as a control

problem. However, unlike conventional control system design which aims for a

well-damped closed-loop system, the corresponding substructuring design often has

lightly-damped behaviour near the boundary of stability. However, because the sub-

structuring testing technique has been developed primarily from a civil engineering

perspective [61, 69, 73], stability has not been studied using a control theoretic

approach. In this section we apply tools from control theory to study the relative

and robust stability again for the single DOF substructured system of § 2.3.1. In

particular we focus on the effect of unmodelled delays and other uncertainties which

occur during substructuring. This technique was originally presented by Gawthrop

et a1. [74J. We present an alternate technique for calculating the critical delay, Te, to

that of using DDE models which can be used, although only a linear approximation,

when it is not possible or impractical to apply the DDE techniques.
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3.3.1 The substructured system

Following on from Figure 2.4 (§ 2.3.1) of the single DOF substructuring example,

Figure 3.6 shows two block diagram representations of substructuring. Figure 3.6(a)

shows the ideal case where a numerical model, num, is coupled directly to a

substructure, phy, and there are no transfer system dynamics and hence no need

for a controller. The detail of the two substructure blocks is: for phy the output

Fp and input dp are a collocated force and displacement pair connecting phy to the

numerical part of the substructured system. Similarly for num the input FN and

output dN are the collocated force and displacement pair connecting num to the

physical part of the substructured system. The signal r represents the net effect of

r :1 1
'N I P Pi

nurn i ~ phy

FN

d d F

Numerical i Physical
i

(a) Ideal substructured model

-I 1 -I I

1

p PI

nurn t., • phy
i

• I •
!
!

FN I

rn.a --
I

d F

Numerical Physical

(b) Practical substructured model

Figure 3.6: Substructuring: block diagram approach
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external forces in the numerical part of the model.

In this ideal situation, FN = Fp and dp = dN and the dynamic behaviour of the

substructured system is exactly replicated that of the emulated system, as stated in

Proposition 1. However, for structural or mechanical systems, the physical system

input dp has to be generated by a transfer system which has the control objective

of setting dp ~ dN. The physical force Fp is measured by a sensor system which

also has it's own dynamics. In practice the ideal sensor system has the relationship

that Fp -t FN as dp -t dN.

Figure 3.6(b) gives a block diagram representation of the practical case. In addition

to the two blocks of Figure 3.6(a); tra represents the controlled transfer system

including both inner- and outer-loop control systems, and mea represents the mea-

surement sensor system, which includes the force transducer and associated power

supplies (this is assumed not to interact with pby). We note that physical part of

tra, Tp(s), usually consists of the actuator and inner-loop controller and is affected

by Fp (an actuator only has a finite performance capacity envelope in which it will

operate in a linear fashion), while the numerical (augmented) part of tra, T(s), is

the outer-loop controller with its accuracy being affected by the measured version

of Fp (FN)' At this point, the following assumption is made

Assumption 1 The four systems in Figure 3.6{b} are linear, time-invariant and

stable.

Using Assumption 1, the ideal substructuring case, Figure 3.6(a), may be represented

by:

F» = P(s)dp

dN = N1{s)r - N2{s)FN

= N(s)(Nr(s)r - FN)

(pby), (3.25)

(3.26)

(3.27)(num),

where, P(s) is the transfer function corresponding to pby, Nl(S) and N2(s) in

Eq. (3.26) are separate parts of the numerical model, which we re-express in Eq. (3.27)
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in a more convenient form for later analysis; N (s) is the transfer function correspond-

ing to num and N; (s) is a transfer function representing the interface between

num and the external forcing. In the ideal case there are no transfer system

or measurement dynamics, such that FN = F» and dp = dN. Then equations

Eq. (3.25) and Eq. (3.27) for the physical substructure and the numerical model

dynamics may be simplified such that the overall system dynamics are identical to

that of the emulated system. This leads to the relation

(3.28)

where Lo(s) = P(s)N(s) and is defined as the nominal loop gain.

For the realistic substructuring representation, Figure 3.6(b), the dynamics of the

transfer system and the measurement system must be included. We define these

dynamics as

dp = T(s)dN - Tp(s)Fp

FN = M(s)Fp

(tra),

(mea),

(3.29)

(3.30)

where the term Tp(s)Fp of Eq. (3.29) includes the net effect of Fp and FN on tra,

and M (s) is the transfer function representing the measurement sensor system. From

Assumption 1, each transfer function explicitly appearing in equations Eq, (3.25)-

Eq. (3.30) is stable. The issue is then to investigate whether the dynamics of the

substructured system shown in Figure 3.6(b) is also stable.

Rearranging equations Eq. (3.25), Eq. (3.27), Eq. (3.29) and Eq. (3.30) the repre-

sentation of Figure 3.6(b) may be written as

[1+ P(s)Tp(s)JFp = Lo(s)[T(s)Nr(s)r - T(s)M(s)FpJ. (3.31)

Defining the neglected gain as A(s) and the neglected forward gain as Ar(s) we obtain

A(s) = [1+ P(s)Tp(s)rl T(s)M(s),

Ar(s) = [1+ P(s)Tp(s)rl T(s)).

(3.32)

(3.33)
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Defining an equivalent force, Fe = Ar{s)Nr{s)r, the system dynamics may be ex-

pressed as

Fp = Lo{s)[Fe - A{s)Fp]. (3.34)

Figure 3.6{b) can thus be represented by the classical feedback system of Figure 3.7.

Finally, defining D (s) as the transfer function relating Fe and Fp for the practical

substructured system, using Eq, (3.34) we can write:

Lo(s)
D(s) = 1+ A(s)Lo(s)' (3.35)

such that

Fp = D{s)Fe. (3.36)

Using Eq. (3.28) and recognising that for the ideal case A{s) = Ar{s) = 1, the

corresponding nominal transfer function relating to the ideal substructured system,

and the emulated system, may be defined as

Lo{s)
Do(s) = 1+ Lo{s)' (3.37)

In Chapter 5 we discuss the use of different robustness compensation schemes. We

note that Do (s) will explicitly include these algorithms and therefore change. Thus

for comparison, we define Dem(s) as the emulated system transfer function such that

Dem{s) = Do(s) when Lo(s) does not incorporate any compensation schemes.

3.3.2 Relative and robust stability

Figure 3.7 and the corresponding closed-loop system Eq, (3.36) are in the classical

feedback control system form where Lo(s) would be interpreted as the "system" and

A(s) as the "controller". This means that a range of standard control system design

techniques ([99]) can be brought to bear on the problem.

For example, relative stability ([99]) can be characterized as follows. Define the

critical frequency We as the solution of

IL(jwe)I = 1, (3.38)
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Figure 3.7: Sensitivity feedback system

where the actual loop gain, L( s), is defined as

L(s) = A(s)Lo(s). (3.39)

The corresponding phase margin ¢m may be written as

(3.40)

The phase margin provides a measure of how near the ideal system (with A(s) = 1)

is to instability in terms of how much phase lag (due to A(s) ~ 1) is permissible.

For example, if the neglected dynamics comprise a pure delay (A(s) = e-S7") then

the critical delay, Te, is the time delay which would give a phase lag of ¢m and is

given by
¢m

Te=-'
We

(3.41)

This gives an alternative method for computing the critical delay, in addition to

that developed by Wallace et al. [69] which uses DDE models presented in § 3.2.

For the class of system for which the DDE methods cannot be applied or when it is

impractical to use the technique, Eq. (3.41) could still be used in many cases (even

if only as a linear approximation) to give an estimate of Tc- The link between the

two techniques is discussed further in § 3.3.3.

However, for substructuring systems we would like to apply more general, robust

stability methods. Using the approach outlined in Goodwin et al. [99, sec. 5.9],

together with the assumption that both Lo(s) and A(s) are stable implies that the
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closed-loop system of Figure 3.7 is stable if

IDo{jw)II~(jw)1 s 1 \lw, (3.42)

where

~(s) = A(s) - 1. (3.43)

This is a conservative result but has the advantage of bounding the error transfer

function ~ in terms of the desired system Do{jw). In particular is shows that

~(jw) must be small at those frequencies where Do{jw) is large - typically at the

resonant frequencies of the desired system. Although these methods are standard

in the control system context, they are novel in the substructuring context.

3.3.3 Explicit stability analysis

The single DOF example of a substructured system is shown schematically in § 2.3.1.

The system has a numerical substructure consisting of a mass of mkg, a spring

with stiffness kN /m and damper with constant eNs/m and a physical substructure

consisting of a spring with stiffness ksN /m. In this case

( ) ksLo s = ,ms2 + cs + k (3.44)

(3.45)Nr(s) = cs + k.

Defining the natural frequency of the numerical subsystem as Wn

corresponding damping ratio ( = 2':w" and p = lj: we can write

]XJ.J2
Lo(s) = n

S2 + 2(wns +w~,

Nr(s) = m(2(wns +w~).

- v'f_, the

(3.46)

(3.47)

Defining 8 = ..L, this can be rewritten in normalised form as
w"

P
Lo (s) = 82 + 2( S+ 1 '

Nr(s) = k(2(s + 1).

(3.48)

(3.49)
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Defining w = .!:L and using Eq. (3.38), the critical frequency corresponding to
Wn

Eq. (3.48) is the solution of

(3.50)

Eq. (3.50) is quadratic in w2• It has real solutions if

(3.51)

There are two cases: if p ~ 1 then Eq. (3.51) is independent of (, otherwise the

condition depends on the value of (. In the case of real solutions, the positive

square root of a positive solution gives a (positive) value of w satisfying Eq. (3.38).

Figure 3.8{a) shows log ILo{jw)1 plotted against jw for p = 1 and ( = 0.1066. In

this case, We = 1.398, the frequency at which ILo(jw)1 = 1. Figure 3.8(b) gives the

corresponding phase (in degrees) indicating a phase margin of 17.34° = 0.3027rad.

This gives a critical delay of re = 0.2165 (re = 6.77ms), which is precisely the value

obtained from the DDE numerical analysis of § 3.2.2, confirming the fact that both

methods are exact.

The corresponding diagrams for L = e-jw Lo are plotted in Figures 3.8(a) and 3.8(b).

As predicted, L{jwc) = -1 corresponding to IL(jwc)1 = 1 and LL(jwe) = -180°.

Figure 3.9{a) shows how the phase margin varies with p and Figure 3.9(b) how

it varies with (. For small values of (, the phase margin ¢m is approximately

proportional to (. Larger values of p give a reduced phase margin. Figure 3.8(a)

also provides alternative insight into the solution of Eq. (3.50). From Eq, (3.48), the

sole effect of p is to move the curve of Figure 3.8{a) vertically. It is therefore clear

that when p > 1, log ILo(jw)1 = 0 at only one frequency implying a single positive

real solution of Eq. (3.50) for w2. On the other hand, if p < 1 there is no solution

if the peak of the curve is below zero. From Eq. (3.48), the peak value occurs at

an approximate frequency of w = 1 where ILo(jw)1 = ~. Thus, as also indicated in

Figure 3.9(a), the phase margin is infinite when p < 2(.

The robustness criterion Eq. (3.42) can be examined by plotting both ID(~w)1 and
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Figure 3.8: Sensitivity: Phase margin. (a) shows the log magnitude of the nominal

log ILol and actual log ILl plotted against log normalised frequency logw; because

there is only a phase error (pure delay), the curves are the same; the critical

frequency Wc is marked by a vertical line and a unit gain by a horizontal line. (b)

shows the corresponding phases together with a vertical line at the critical frequency

Wc and a horizontal line at -180°. The phase margin is the vertical distance between

-180° and the corresponding phase curve ang.Lo(jw) at w = wc' In this case, the

actual system is such that the neglected time delay is on the boundary of stability.
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Figure 3.9: Sensitivity: dependence on parameters; (a) shows how the phase

margin cPm depends on p for three values of ( (in this case, the phase margin cPm
decreases with p); (b) shows how the phase margin cPm depends on (for three values

of p (in this case, the phase margin cPm increases with ().

1~(jw)1 on the same diagram. For example, Figure 3.10(a) shows ID(~w)1when p = 1

and ( = 0.1066. On the same diagram, 1~(jw)1 is plotted for two cases:

{

-fse ,
A(s) = _1_

1+fs'

(shown as ~d in Figure 3.1O(a))
(3.52)

(shown as ~l in Figure 3.10(a))

where T = 0.21. In this case, stability is predicted in each case as Eq. (3.42) is

satisfied. However, this would not be the case if T were increased slightly. Note

that both forms of A(s) of Eq. (3.52) give similar results in this case indicating that

phase error is more important that amplitude error in this case. Note that Tc = 0.21

predicted by this (conservative) robust stability method is less than that predicted

by the the exact relative stability (phase margin) approach of Tc = 0.2165. However,

the robustness approach is more general in that the uncertainty does not need to be

parameterized by a transfer function.

The minimum value of ID(~w)1 occurs at w2 ~ (1 + p) with a value of approximately

~. Noting that the maximum value of ~ = 1 - e:" is 2, it follows that the
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Figure 3.10: (a) Shows the inverse magnitude of D(jCJ) against jCJ on a logarithmic

scale. For comparison two possible uncertainty transfer functions e-jwT and l+~WT

are plotted for f = 0.21. (b) Shows the asymptotic stability of the substructured

system.

substructured system will be stable for any delay T if

p
(> yT+p' (3.53)

thus agreeing with the DDE analysis. Figure 3.1O(b) shows the boundary implied

by Eq. (3.53).

3.4 An experimental substructuring example

The experimental transfer system equipment has been extensively analysed and is

described in § 2.3.4. It is known that a good model for the nominal dynamics

of the system under an inner-loop proportional (P) control with kp = 1 can be

approximated to a delay of T ~ 9.4ms for this excitation frequency. Both § 3.2 and

§ 3.3 confirm that the critical value of stability for the single DOF system analysed

is fe = 0.2165 or re = 6.77ms. As T > Te, some form of delay compensation must

be applied to the substructuring algorithm to achieve a stable algorithm. The delay

compensation techniques used in this work are discussed in full in Chapter 4 but are

required here in order to demonstrate the stability characteristics of an experimental
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substructured system. To this end, we use a forward prediction algorithm (§ 4.3.5)

which allows us to predict the numerical model forward a given magnitude of time,

and thus, reduce the transfer system delay by the same amount. Predicting forward

9.4ms would result in the transfer system delay 'r ~ O.

Figure 3.11 shows the experimental results for a wall excitation of 3Hz and constant

delay compensation (§ 4.3.5) of 9.4ms. It can be seen from Figure 3.11(a) that the

numerical model dynamics z closely replicate those of the emulated system z", losing

accuracy briefly at direction change for the actuator. Note that the transfer system

dynamics are not shown on this plot but are represented by the synchronisation

subspace plot Figure 3.11(b) (see § 2.5 [91]). Perfect synchronisation is represented

by a straight diagonal line. A constant delay turns this straight line into an ellipse, as

can be seen from the limit of stability shown in grey representing z vs. z( t - 're). We

can see from the subspace plot that there is generally a high level of synchronisation,

well below the stable limit, apart from when the actuators change direction. Here we

observe a region of loss in accuracy as the control signal must reach a certain level

-0.8 '--_-'-_--'- __ -'---_--'-_--"L...-._..J.-_--1-_---' -1 '-----~ __ __J

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 -1
Time (s)

(a) Numerical Model Accuracy (z) Compared to the Emulated System (z')
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0.6~

E~
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(b) Synchronization Subspace
1r;=====::;-----,

Figure 3.11: Experimental real-time dynamic substructure test with wall excitation

of 3Hz and delay compensation of 9.4ms. Transfer system synchronisation is shown

in (b) with limit of stability represented by the z vs z( t - 're) loop. 're=6.77ms.
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CHAPTER 3. STABILITY CRITERIA FOR A SUBSTRUCTURED SYSTEM

to overcome the static friction of the actuator internal mechanisms before the piston

will move (the deadzones as described in § 2.3.4). In fact, the algorithm verges into

the unstable region at both limits. However, despite this, once the static friction

is overcome, synchronisation is quickly regained. This shows that the instability

shown by a substructured system may not be not catastrophic. For instability to

grow cumulatively, the synchronisation must remain in the unstable region for a

longer period of time, that is a number of successive time steps. Therefore, if the

control algorithm can recover more quickly than the exponential growth (given by

the real part of the eigenvalue at the actual delay as can be observed from Figure 3.2),

then the system will be able to recover regardless of the disturbance.

The transition to instability can be seen from Figure 3.12 for this experimental

system. It is qualitatively similar to the simulated result shown in Figure 3.3 and

occurs at a forward prediction magnitude of 2.6ms. The actual response delay of

the transfer system is approximately T = 9.4ms for this excitation condition, giving

an experimental limiting value of Tc ~ 6.8ms. The frequency at which instability is

observed is shown in Figure 3.13; it again corroborates the results of § 3.2.4 that

WI ~ 7.1Hz.

1.2

0.8 l= ~*J
~ ~ Pt A

~ ~E 0.4
~
Q)
"0 0:J
:t:
0.
E

~

« -0.4

~ ».~ 'J U ~ ~
~-0.8 v

-1.2
6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

Time (8)

Figure 3.12: Transition to instability as the delay compensation is reduced on the

experimental system, Forward Prediction p ~ 2.6ms.
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Figure 3.13: Frequency spectrum for the unstable experimental substructured

response.

In addition to the any delay compensation error, the experimental tests were affected

by approximately 5-7% of noise on the feedback force signal, which makes it difficult

to precisely determine the above values of Tc and WI, as can be seen form Figure 3.14

unlike for the numerical simulations. However, despite this it can be seen that all

the phase delay has been removed from the experimental system, the reason why

-20~----~----~------~----~~--~~----~------L_ ~
3.3 3.4 3.5 3.6 3.7 3.8 3.9

Time (5)
4 4.1

Figure 3.14: Comparison of the emulated force Fnumerical to that of the actual

experimentally measured force Fexperimental.
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Eq. (3.4) is stable. This is a general issue for all experimental systems, nevertheless,

the agreement with the two modelling techniques remains excellent.

3.4.1 Substructuring with very low damping

We note that the lower the damping in the system, the smaller the critical limit of

stability and, therefore, the higher ~(A) will be for a given response delay. Thus,

the harder the controller must work to achieve the same results for a given delay. To

(a1) Real part of characteristic roots

5
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IDcr:
o

(a2) Enlargement near Te

2.---.........,---.
t: = 1.3rmS

~

I
:
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ID 000
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I
iunstablestable

_21-..-"""':'--...1
012

1(ms)

(b) Variable substructure spring stiffness (c) Variable system damping
120

p=l stable region
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Figure 3.15: Repeat of Figure 3.2 for lower damping coefficient: (b) variable

substructure spring stiffness ks (c = 3Ns/m), and (c) variable system damping c

(ks = 2250N/m).
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illustrate this we have repeated the experiment shown in Figure 3.11 with a similar

test but with damping of only ( = 0.0213 (c = 3Ns/m) instead of the previous value

of ( = 0.1066. This level of damping is more representative of the typical situation

found in civil engineering applications.

Figure 3.15 shows the new stability bounds for the system using DDE-BIFTOOL

as in § 3.2.3. The new critical delay is given in Figure 3.15(a2) as Te = 1.335ms

for the case of p = 1. Consequently, the asymptotic stability regions given in

Figure 3.15(b) and (c) as much reduced. Figure 3.16 shows the results for a steady

state experimental test. We see a similar result as the delay compensation scheme is

still working effectively, however the margin to instability is now vastly reduced. The

resulting substructured system is therefore far more volatile, such that the transition

to instability is quicker (as the exponential growth is faster for the same magnitude

of delay past the critical limit) and the effect of an external disturbance could more

easily lead to instability and a catastrophic failure of the substructure. This leads

us to the concept of robustness for a substructuring test which is discussed in detail

(a) Numerical Model Accuracy (z) compared to the Emulated System (z")1r-----~------~------~-------r------,
r==zl
l=:=_D

(b) Sychronization Subspace
1 rr=======:::::=:::,-~

0.5

- zvsx
_ zvsz(t-t

c
)

-0.5

E
~
~ 0
.1::
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E«
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-1~----~------~------~------~------~ -1L_------~ ~
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Time (s)
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Figure 3.16: Experimental real-time dynamic substructure test with wall excitation

of 3Hz and delay compensation of 9.4ms. Transfer system synchronisation is shown

in (b) with limit of stability represented by the z vs z(t; - Te) loop. Te=1.335ms.
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in Chapter 5. In essence, improved robustness, increasing the margin to instability,

comes at the cost of reducing dynamical accuracy when compared to the emulated

system dynamics.

3.5 Conclusion

In this chapter we have discussed two approaches to representing the stability

criteria for a given substructured system. We have been able to use well established

techniques from two differing fields to determine the critical delay, Tc, beyond which

the substructured system is unstable. Specifically, using just a well-known simple

linear example of a single mass-spring oscillator system all the dominant but complex

characteristic effects that delays play in the dynamical accuracy and stability of the

substructuring algorithm have been demonstrated. Furthermore this has been done

using both analytical and numerical solutions. In order to validate these approach

experimentally, the delay compensation scheme of Chapter 4 is utilised to good effect

demonstrating the overall effectiveness of these modelling approaches.

The first method we employ here is to model the substructured system with delay

differential equations (DDEs). The advantage of DDE modelling is that we can use

powerful analytical and numerical methods to determine the stability of the DDE

model and, hence, of the substructured system. The field of DDEs is well developed

and as such we can use such tools as DDE-BIFTOOL to follow the Hopf bifurcations.

However, there are some substructured systems that cannot be modelled in this way

due the the characteristics of the DDE produced (3rd order DDE systems where

the acceleration state is delayed). This is where the phase margin approach to

calculating the relative and robust critical delay is brought to bear. The use of linear

theory - and particularly the assumptions that the experimental substructure and

transfer systems are approximated by linear transfer functions - would at first

sight appear to be a serious limitation of this analysis. However, this technique

can be applied to any generic substructured system, providing a good working

PAGE 102



3.5. CONCLUSION

approximation of stability for complex systems.

Hybrid testing of lightly damped dynamical systems using numerical-experimental

real-time substructuring is sensitive to both transfer system delay and uncertainty.

It should be noted that the lower the damping in the system the greater the

destabilizing the effect both the transfer system delay and uncertainty have on the

substructuring algorithm. This leads to the design of a robust transfer system in

Chapter 5.
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Chapter 4

Delay compensation techniques

SUMMARY: This chapter presents the concept of using a delay com-

pensation scheme, as an outer-loop control strategy, in order to achieve

successful real-time substructure testing. The aim, regardless of the

algorithm used, is to cancel out the inherent dynamic characteristics of

the transfer system in order to negate the effect of the delay errors fed

back into the substructuring algorithm.

4.1 Introduction

In the field of substructuring, the first time delay compensators were obtained by

assuming that the dynamics of the transfer system may be approximated to a pure

delay. For example, Horiuchi et al. [61] and Blakeborough et al. [1]proposed outer-

loop forward prediction methods which use polynomial extrapolation to predict

forward the numerical model displacement by a fixed number of time-steps. Darby

et al. [73]relaxed the assumption of a pure delay by developing a forward prediction

method that varied the amount of delay compensation, based on the error between

the actuator displacement and the desired numerical model displacement. This

method was extended by Wallace et al. [75] who developed an adaptive forward

prediction algorithm that used variable polynomial coefficients such that non-integer
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multiples of the previous time step could be predicted and also incorporated an

amplitude correction algorithm (discussed in detail in § 4.3.6). The use of a Smith

predictor has also been proposed as a suitable delay compensator Sivaselvan et al.

[68].

Lag compensation via an experimental transfer function estimation of the combined

inner-loop controller and actuator dynamics has been proposed by Gawthrop et al.

[76](discussed in detail in § 4.4.1) and Sivaselvan et al. [68]. The proposed outer-loop

controllers compensate for unwanted dynamics by applying the inverse of the transfer

function estimation. Model reference adaptive control has also been suggested as

an outer-loop strategy by Wagg and Staten [67], Neild et al. [77]and Lim et al. [78]

which demonstrated how lag compensation can be achieved via this approach.

4.2 Application to delay compensation

The value of being able to compensate for the transfer system dynamics can be seen

from Figure 4.1. If the inner-loop proprietary controller is designed correctly (see

§ 2.3.4), then the response of the transfer system x to the demand of the numerical

model z will be accurate and have low uncertainty apart from the inevitable time

delay T (expected in any dynamical system under proprietary control). This delay

mayor may not be frequency dependent depending on the type of transfer system

being used. If we use an additional outer-loop controller which creates a new

reference signal, z', in front of original numerical model signal and then use this

as the new demand for the inner-loop controller, the magnitude of the transfer

system delay can be reduced. As the phase advance of this new reference signal

increases in magnitude the synchronisation error e2 (the local substructuring error,

§ 2.6) decreases until it matches the actual delay of the transfer system T. At which

,Point, complete compensation is said to have been achieved as the transfer system

dynamics will be have been nominally cancelled out.

From Chapter 3 it is clear that the magnitude of delay of the transfer system T
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Figure 4.1: Delay compensation for the transfer system dynamics by creating a

new reference signal z'

has a significant effect on the dynamics of the numerical model as the correct

force vector F(t) must be added into the numerical model at the correct time.

In fact, Proposition 1 tells us that the accuracy of the numerical model, el, is

directly coupled to the synchronisation error of the transfer system, e2. If T >

Te then the substructuring algorithm will be unstable and is the typical case m

substructuring when using the inner-loop controller in isolation. As the magnitude

of delay compensation is increased T will decrease until 0 < T < Te at which point the

substructuring algorithm will be stable but the dynamical accuracy of the numerical

model will be compromised, as the transfer system delay is still adding negative

damping into the system. When T = 0 then the synchronisation error e2 = 0

and thus the numerical model dynamics will now replicate those of the emulated

system, z", as el = O. However, in practice the synchronisation error can never

be exactly equal to zero in a real substructuring test (due to the effects of noise

and experimental errors) so the practical interpretation of Proposition 1 is that as

e2 -t 0 the substructured model more closely replicates the dynamics of the emulated

system.
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It is possible to further increase the level of compensation such the transfer system

would lead in front of the numerical model, such that T < O. This situation would

result in adding extra damping into the substructured system and is discussed

further in § 5.5 in relation to creating a robust substructuring algorithm.

4.3 Delay compensation via polynomial extrapolation

Figure 4.2 shows an example sinusoid reference signal of 10Hz (shown by the solid

grey line) which is to be predicted forward. A section of data must be taken to

act as control points for the fitted polynomial curve, here a buffer of 20 data points

n = 20 starting at time t = 1 has been stored. For example, if we wish to predict

forward 18 time steps (P = 18 and 6.t is the sample time step size and equal to

1ms in this case) Figure 4.2 shows the differing accuracies obtained by the various

order N of polynomial fitted curves. From this example, we see that both the 8th

and 10th order curves have the highest degree of accuracy, whereas the 4th order

curve loses coherence more quickly. However, the higher the order of prediction the

Least Squares Polynomial Curve Fitting of Buffered Data

0.8

0.6

0.4
I
I
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- 4th order poly1it, N = 4
8th order poly1it, N = 8
10th order poly1it, N = 10
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E
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Figure 4.2: Least squares Nth order polynomial curve fitting of buffered data.
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more computationally intensive the calculation and the more inherently unstable

the predicted signal z' will become.

To achieve optimal delay compensation the desired amount of time for which the

numerical model should be predicted forward is equal to T = 6tP.

4.3.1 Least squares polynomial fitting

One mathematical procedure for finding the best fitting curve to a given set of data

points is by minimising the sum of the squares of the offsets (known as residuals)

of the points from the curve, an example is shown in Figure 4.3 [100]. The sum

of the squares is used instead of the offset absolute values because this allows the

residuals to be treated as a continuous differentiable quantity. However, because

squares of the offsets are used, outlying points can have a disproportionate effect on

the fit, a property which mayor may not be desirable depending on the problem.

In practice, the vertical offsets from a line are almost always minimised instead of

the perpendicular offsets. This provides a fitting function which is independent for

-1

• Sampled Data
- Fitted Curve

0.5

E
~
Q)
"0 0.~
C.
E«

-0.5

1.01 1.02 1.071.03 1.08 1.091.04 1.05 1.06
Time (5)

Figure 4.3: Generalised curve fitting of a 10Hz sinusoid to discrete data points.
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each variable, allows uncertainties of the data points along the x- and y-axes to be

incorporated simply, and also provides a much simpler analytic form for the fitting

parameters than would be obtained using a fit based on perpendicular offsets.

The linear least squares fitting technique is the simplest and most commonly applied

form of linear regression and provides a solution to the problem of finding the best

fitting straight line through a set of points. However, due to the dynamics of the

numerical models in our systems we move from a best-fit line to a best-fit polynomial.

A polynomial is a mathematical expression involving a sum of powers in one or more

variables multiplied by coefficients. A polynomial in X of order N with coefficients

ai (where i = 0, ... , N) is given by,

(4.1)

Using a standard least squares polynomial derivation we can deduce an equation to

describe the coefficients ofthe curve [100]. From Eq. (4.1) the square of the residual

is given by
n

R2 = L[Yi - (ao+ alXi + ... + aNxt'W,
i=l

(4.2)

where n is the number of data points. The partial derivatives of Eq. (4.2) can then

be obtained, these are given by

We can rewrite these equations in the following form

n n n

aOn+al LXi + ... + aN LXt' = LYi,
i=l i=l i=l

(4.6)

n n n n

aoLXi + al LX~ + ... + aN Lxf+l = LXiYi,
i=l i=l i=l i=l

(4.7)
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(4.8)

which can in tern be represented in matrix format as follows

L:7=1 Xi L:n N ao L:7=1 Yin i=l Xi

L:7=1 Xi L:n 2 L:n X!,,+1 a1 L:7=1 XiYii=l Xi t=l t (4.9)-

L:n N L:~ X!,,+1 L:n 2N aN L:n Ni=l Xi t=l t i=l Xi i=l Xi Yi

Eq. (4.9) is the equation for the least squares polynomial fit. The first matrix of

this equation is called a Vandermonde matrix [100]. We can also deduce the matrix

for the least squares fit by writing

1 Xl XN ao Y11

1 X2 XN a1 Y22 (4.10)-

1 Xn xN aN Ynn

Premultiplying both sides by the transpose of the first matrix then gives

1 1 1 1 Xl xN ao 1 1 1 Y11
Xl X2 Xn 1 X2 xN a1 Xl X2 Xn Y22 -

xN xN xN 1 Xn xN aN xN xN xN Yn1 2 n n 1 2 n
(4.11)

which, if multiplied out, gives a solution equal to Eq. (4.9). Therefore, given n data

points (Xi,Yi) with fitted polynomial coefficients (ao,...,an) we can write

Y1 1 Xl x2 xN ao1 1

Y2 1 X2 X2 XN al2 2 (4.12)-

Yn 1 Xn X2 XN aNn n

Therefore, in matrix notation, the equation for a polynomial fit is given by

y=Xa, (4.13)
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which can be solved by premultiplying by the matrix transpose XT,

XTy = XTXa. (4.14)

We can solve the matrix equation numerically, or it can be inverted directly to give

the solution vector given by

(4.15)

where setting n = 1 will give the linear solution.

4.3.2 Single step forwardprediction

Delay compensation by polynomial extrapolation is not a new concept, single time

step prediction techniques have already been proposed in relation to substructuring

by Horiuchi et al. [61] and Darby et al. [82]. These algorithms are based on using

predefined coefficients, iu, for an Nth order polynomial fit of n number of control

points following the equation,
N

Z' = Lai Zi,
i=O

where Zo is the present calculated numerical model displacement and z, are the

(4.16)

previously calculated displacements at i::.t x i units of time ago. Figure 4.4 shows the

forward predicted point z' being obtained by extrapolating the polynomial function

over the present displacement Zo and N previous calculated values, thus making the

number of control points used, n = (N + 1).

For this 2nd order polynomial fit we attain the following constants ao = 3, al = -3

and a2 = 1 [61]. Note that we can only predict one whole time step forward and the

correct number of control points n must used for the polynomial function (to ensure

that the X matrix of Eq. (4.13) is square) otherwise the polynomial fit will not hold.

To predict further ahead than one time step we can simply apply Eq. (4.16) more

than once [82]. For example to predict two time steps forward we see that if

(4.17)
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Figure 4.4: Single time step prediction of n = 3 control points for a N = 2 order

polynomial fit.

then,

(4.18)

Nate that we are still restricted to predicting in whole time steps unless an additional

interpolation is carried out between the two points [82].

However, if we use Eq. (4.15) to solve the (XT X) -1 XT matrix components numer-

ically first, we can deduce a more generalised forward prediction algorithm where

multiples and fractions of one time step can be predicted in one iteration and we

are no longer constrained to ri = (N + 1) number of control points. Increasing ti can

help to smooth noise out of the numerical model and thus from the control signal.

We define the size of the X matrix by choosing values for the number of control

points n and the order of the polynomial fit N. For the case above, n = 3 and
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N = 2, thus rewriting the general Eq. (4.13) for this specific case gives us,

Zo 1 to t2 ao0

ZI - 1 tl t~ al (4.19)

Z2 1 t2 t2 a22

where, t, is the current simulation time for each value of Zi'Therefore, for a sample

time step size ~t as shown in Figure 4.4,

Zo

1 -~t ~t2

1 -2~t 4~t2

1 o o
(4.20)ZI

The predicted point z' is given by an adaptation of Eq. (4.13),

Z' = X» a, (4.21)

where, X» is the forward prediction vector and given by,

x; = [1 P~t (4.22)

and P is the number of time steps to be predicted forward (which does not have to be

an integer multiple of ~t). As X is a square matrix in this case, (XT X)-I XT = X-I,

therefore,

(4.23)

Evaluating XpX-1 gives an expression which is independent of the sample time step

size ~t. Substituting into Eq. (4.23) for the case when P = 1 we see that

(4.24)

thus matching the coefficients of the one step method in Eq. (4.17). Substituting

P = 2 we see that

(4.25)

matching the coefficients found in Eq. (4.18) but in a single operation. Therefore,

the coefficients (li from Eq. (4.16) are actually the pre-multiplication of the forward

prediction vector X p for the special case of P = 1, such that

(4.26)
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In this way, the coefficients a are predefined and thus fix the level of forward predic-

tion obtained, whereas the coefficients of the polynomial function a are calculated

each time step and therefore allow variable degrees of forward prediction to be

achieved by altering the value of P online.

4.3.3 Online forward prediction using variable coefficients

To achieve online forward prediction a buffer of n data points of the numerical model

displacement z are stored and updated by a buffer overlap of (n - 1) each time step.

These are then fed into a least squares polynomial fitting sub routine which uses

the set of control points [Zn-b Zn-2, ... , zol to calculate the Nth order polynomial fit

and therefore find the coefficient vector a from Eq, (4.15) for that time step. The

current coefficients are then fed into a reconstruction algorithm that calculates the

predicted point z' according to Eq. (4.21) using the forward prediction vector X»,

such that
N

Z' = »; ~::)aipi).
i=O

(4.27)

When using linear control, an additional source of error is the amplitude accuracy.

Typically, as the excitation frequency is increased the level of amplitude accuracy of

the transfer system reduces. Thus, the forward predicted point z' is then multiplied

by a gain ka to remove this error and increase the synchronisation accuracy.

An example of the layout for an online forward prediction model is shown in Fig-

ure 4.5. Note that due to the structure of the Matlab Polyfit subroutine, the points

must be re-indexed by a factor of (n - 1) in order to calculate the predicted point z'

correctly. Additionally, the buffer must be completely filled at least once before the

prediction process has been fully initialised. This issue can be resolved in a number

of ways; by zero padding, which consists of extending the signal back in time with

zeros, of length m (where, m > n), or by activating the algorithm only after the

buffer has been filled. Note that the numerical model reference signal, z, does not

have to be a sine wave, but must be some form of smooth signal. A sharp signal
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Reconstructor

i:ai{p+{n-1))i
.0

Scope

Figure 4.5: Basic online forward prediction model structure.

cannot be extrapolated in this manner.

We define the predictor frequency, !predictor, as the maximum frequency at which we

can achieve any magnitude of forward prediction. Figure 4.6 shows the relationship

between the maximum number of time steps that can be predicted forward, Pmax, at

a number of different frequencies up to !predictor for set algorithm parameters of N =

8 and n = 20. An inverse relationship is observed, with !predictor ::::::57Hz in this case.

We cannot explicitly calculate !predictor as it depends the algorithm parameters of !:It,

Nand n. However, we can use this inverse relationship to extrapolate the predictor

frequency for a given set of algorithm parameters with only a few experimental data

points. We can now examine the effect each of the algorithm parameters has on

!predictor'

The smaller the sample time step size, !:It, the greater the relative range of the

prediction algorithm, regardless of the other algorithm parameters. This is because

although the algorithm allows more time steps to be predicted the actual distance

in time that must be predicted forward decreases as !:lt is reduced, as T = !:ltP.

However, for experimental purposes the forward prediction algorithm is restricted by

the real-time requirements of the hybrid testing methodology, making the choice of

!:It for a specific model straight forward. Typically, !:lt is made as small as possible

but still allowing the full model computation to be carried out within the hard time
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Capabilities of the forward prediction algorithm
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Figure 4.6: Magnitude of Pmax as the input frequency f is increased. Algorithm

parameters: N = 8, ti = 20 and t:::.t = 0.001.

constraints.

The higher the order of the polynomial N, the greater its ability to fit to the input

reference signal. The more complicated the input reference signal the higher the

order of the polynomial fit needs to be, especially if the forward prediction algorithm

must cope with complex harmonic sinusoids. Additionally, the higher N the greater

the ability of the polynomial fit to achieve coherence at greater values of P, the

amount of time steps predicted forward. However, there is a limit to how high

the order of the polynomial can be as simply increasing the order will not always

increase coherence. Polynomial extrapolation is inherently unstable, meaning that

high levels of prediction with high order polynomial curves can lead to instability

rather than just a loss in coherence. We therefore have a trade off between choosing

potential high order accuracy with low order stability. It is important to note that

as soon as noisy signal if fed into the algorithm the instability becomes increasingly ..

apparent. Additionally, it is also important to note in a real-time experimental

situation there is a computational overhead with using a higher order polynomials.

Therefore, as small as possible a polynomial fit N should be chosen, only increasing
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the order if coherence cannot be achieved over the desired range up to the predictor

frequency !predictor.

Keeping the order of the polynomial N constant (let N = 8 for example), we can

now observe the effect of varying the number of control points n, the size of the data

buffer. Figure 4.7 shows the linear relationship between nand Pmax up until the

point where the number of control points is too low to create an accurate polynomial

fit. This minimum limit is set at n = (N + 1) such that Eq. (4.13) can be solved.

Comparing the results for the input reference of 5 Hz and 10 Hz we see a constant

gradient, just a changing value for the y-intercept constant. Note that the constant

of proportionality here is less than one. This means that the smaller ti is (up to

the cut off limit) the greater distance in time we can predict forward. Therefore to

achieve the peak performance from the forward prediction algorithm the number of

control points should be set as low as possible. However, as the algorithm also acts

as a smoothing filter, by increasing the number of control points the effect of noise

on the signal to be predicted can be significantly reduced. This is especially helpful

when using higher order polynomials as they are inherently more unstable. As a

Capabilities of the forward prediction algorithm
100r----r----.----,----,-----,---~==~~==~====~==~

1\l 0 Experimental Data for F = 5 Hz
a..E -- Linear Fit (excluding n = 5)
U 0 Experimental Data for F = 10Hz
~-- Linear Fit (excluding n = 5)
Q)

:c:i. 60
c:o
~
"C 40
~
0..
'E
(tJ 20
~ou..

··· ..i"r· .

........... \).

o
o

10 20 30 40 50 60 70 80 90 100
No. of Control Points. n

Figure 4.7: Increased prediction capabilities by reducing the number of control

points ti up to the minimum limit of ti = (N + 1), where N = 8.
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guideline, a suitable range of control points is given by

(N + 1) <= n <= 4N. (4.28)

4.3.4 Method for setting parameter values

A general routine for setting the predictor parameter values is as follows:

1. Find the smallest step size At for which the model can run in real-time.

2. Estimate the maximum frequency of the test, !test, using a safety factor of

your choice.

3. Perform a system identification of the plant to be controlled to establish the

likely delay, T, that will occur over the frequency range of interest, giving a

value for Pmax.

4. Chose the order of the polynomial fitted curve by inspecting the input reference

signal. The more complicated the signal, the higher the order N of the

polynomial must be. However, the higher N is the more control points n that

are required to create it and the more likely the algorithm will be unstable at

high values of P. A practical limit for experimental purposes is N <= 8.

5. Chose the number of control points n within the range of Eq. (4.28). The

noisier the input reference signal, the larger n should be.

6. Perform a coherence test to ensure that the algorithm can effectively predict

to the desired requirements and that algorithm is stable. Calculate Pmax for

a small number of input frequencies and then extrapolate !predictor.

7. If !predictor is smaller than !test, or Pmax cannot be achieved with the current

values for At, Nand n, then the values for N or n must be changed, or, as a

last resort, the model must be streamlined to reduce At as this will increase

the forward prediction capabilities of the algorithm.
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It is important to note that this process does not have to be carried out every time

the prediction algorithm is used. For example, in conjunction with the experimental

tests of the case studies discussed in this thesis it was found that a good general

predictor, that will suffice for almost all situations, is where the number of control

points is n = 10 and the order of the fitted polynomial curve is N = 4.

Additionally, this forward prediction algorithm has been designed specifically for a

sinusoidal input due to the nature of the numerical model used in the substructured

system. If a stiffer signal was required to be predicted forward the order of the

polynomial curve would have to be significantly reduced to account for sharp edges.

4.3.5 Constant forward prediction

The basic forward prediction algorithm can be used to effectively remove the transfer

system delay, however, both the magnitude of the forward prediction, P, and the

amplitude gain, ka, must be specifically tuned for each different excitation condition.

When used as an outer-loop strategy in conjunction with the inner-loop proprietary

controller of the substructuring algorithm, it is simply a feed-forward controller.

To show the effectiveness of the basic forward prediction algorithm, we perform

a system identification test for each transfer system (from the MDOF case study,

refer to § 2.3.2) at a frequency of excitation of T1,2 = 4.5H z, Figure 4.8 shows the

subspace plots for both transfer systems for such a test. We can see from Figures 4.8

(a2) and (b2) a significant improvement in the level of synchronisation between each

respective numerical model and the transfer system response for the case when the

algorithm is activated compared to when a standard linear controller is used in

isolation, Figures 4.8 (al) and (bl ). The tunable parameter values are set for each

transfer system to achieve optimum synchronisation for this excitation condition,

the exact values are shown in the figure caption. Although the excitation demands

are identical and the actuators are of the same type, we can see that the transfer

system dynamics vary considerably as shown by the differing subspace patterns in
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Figure 4.8: Synchronisation subplots for a system identification test for each

transfer system at an excitation of ZI,2 = 4.5H z, Algorithm parameters: b.t = 0.001,

N = 4, ti = 10. Tunable parameters: PI = 9.4, P2 = 8.6, kal = 0.99, ka2 = 0.98.

Figures 4.8 (al ) and (bl ), and in the values of the tunable parameters. It can be

seen that the delay error is by far the dominant factor in the synchronisation error.

This highlights the need for the dynamics of the transfer systems to be decoupled

such that their specific mechanical characteristics can be dealt with independently.

It should be noted that although the dynamic characteristics of the transfer systems

used is best characterized by a pure delay, the exact value can vary as it is only an

approximation along with the amplitude accuracy which has a tendency to overshoot

at high frequency due to the fact that the actuators are velocity controlled.
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4.3.6 Adaptive forward prediction (AFP)

In order to remove the need for tuning the prediction parameters and to allow the

algorithm to achieve high levels of synchronisation for frequency dependent and

transient plant conditions we must close the control loop and use the feedback

dynamics of the transfer system. In combination with the existing linear control

present in the substructuring algorithm this model structure now represents an error

driven adaptive feedback controller [lOl]. Figure 4.9 shows schematically how the

basic forward prediction algorithm, shown in Figure 4.5, can be altered to achieve

self tuning. We cannot explicitly measure the transfer system delay T as we only

have data for the current time step, thus we only know the synchronisation error

e2 at any single point in time. Therefore, to achieve complete delay compensation

we can indirectly force T -+ 0 by explicitly using a measure of the synchronisation

error e2' An alternative technique which uses this feedback error to achieve adaptive

compensation is presented by Darby et al. [73J.

As before, the current coefficients are fed into a reconstruction algorithm that

calculates the predicted point z' but now the magnitude of the forward prediction

Reconstructor Z'

Scope

)----,- ~Z .,-,:: ...._ ..•....••• ,.:.-\ •.... _ ..•....• j

)/ \.\ \' .t "\ z.1
r 1/1,'\'/ \'( ,!
j l' \\ ,'t Ii ~ I'~

',.,\, '/ \\,. I:
.\;~ l \\//1

" -" 1
N

l)1 «P+p) + (n.l))1
'.0

Adaptor ar-------------~

Figure 4.9: Adaptive forward prediction (AFP) model structure.
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T is now governed by,

T = D.t(P + p), (4.29)

where, D.t is the sample time step size, P is the fixed initial number of time steps

to be forward predicted and p is the adaptive number of time steps to be forward

predicted. Likewise, the amplitude accuracy is now governed by,

z' = z'(ka + a), (4.30)

where, ka is the fixed amplitude gain and a is an adaptive amplitude variable which

together control the amount of the predicted reference signal to be used.

Setting P = 0 and ka = 1 will bring about zero initial conditions. The delay

compensation can then be completely achieved by the adaptive parameter p and the

amplitude error completely removed by a. Thus, we can use this new adaptive

algorithm when we have no knowledge of the plant dynamics and when there

is transient or frequency dependent plant behaviour. However, it is not always

desirable to start from zero initial conditions, in fact in many cases (and mainly in

earthquake engineering) it is important to start the test with the AFP algorithm

in a state near to optimal adaptation. These optimal values can be estimated by

observing the steady state adaptive values of an uncoupled system identification test

for the specific transfer system. This would then allow the initial transient phase of

the test to be avoided.

A schematic of the Adaptor block of Figure 4.9 is shown in Figure 4.10. The adaption

algorithm works off four triggered states, \01.....4, which have a null value until their

individual trigger conditions are met. Trigger states, \01 and \02, are activated

on the condition of sign change of the numerical model displacement, when z has

zero amplitude. The first state represents a rising edge, z changing from negative

to positive, and the second a falling edge, z changing from positive to negative.

The other two trigger states are similar except activated on the condition of sign

change of the numerical model velocity, Z, with \03 representing a rising edge and \04

representing a falling edge. Effectively these two conditions give the time at which
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'II,

'2

'3 Adaption
Algorithm

'4
82

Figure 4.10: Adaptor model structure, where CPl, ... ,4 are trigger states of the

reference signal and e2 is the synchronisation error.

the maxima CP3 and minima CP4 of the numerical model displacement occurs.

The adaptive forward prediction parameter P is calculated when either of the first

two triggered states CPl,2 are met. This allows the delay of the transfer system

response to be observed independently from any amplitude error. The value of P is

given by,

Pn+l = Pn ± a:eJ,n , (4.31)

where, a: is an adaptive gain parameter for the magnitude of forward prediction and

'Y sets the convergence curve and must be greater than or equal to 1. Note that

the ± relates to whether the signal is a rising or falling edge. Eq. (4.31) shows

that when the synchronisation error e2 is zero, Pn+l = Pn thus P retains its previous

value, indicating that full delay compensation T has been achieved.

Similarly, the adaptive amplitude parameter is calculated when either of tlie second

two triggered states CP3,4 are met. This allows the peak of the numerical model to

be compared to that of the transfer system once delay compensation has occurred.

The value of (1 is given by,

(1n+l = (1n ± /3eJ,n , (4.32)

PAGE 124



4.3. DELAY COMPENSATION VIA POLYNOMIAL EXTRAPOLATION

where, f3 is an adaptive gain parameter for the amplitude accuracy. Note that

until full delay compensation has been achieved the parameter a will give an under

estimation of the amplitude error. However, as the delay is by far the dominant

factor in the compensation algorithm this condition does not effect the performance

of the controller.

We see that by setting both adaptive parameters a and f3 to zero, the adaption

algorithm can be turned 'off' resulting in the basic feed-forward controller, assuming

both Po and ao equal zero. Note that both Eq. (4.31) and Eq. (4.32) include history

data, analogous to that ?f an integrator, such that any steady state error is forced

to zero. The choice of , decides the convergence curve. The-synchronisation error

should be such that e2 < < 1 so the higher " the slower the convergence at very

low instances of synchronisation error, thus the smoother the steady state values

for the adaptive parameters but the less reactive it is to fast transient or frequency

dependent plant behaviour. Additionally, as the adapt ion only occurs at the set

trigger conditions, 'P1, ...,4, the AFP algorithm is subject to a persistence of excitation

criterion [101].

To show the effectiveness of the AFP algorithm, we perform a system identification

test again for each transfer system (from § 4.3.5) but with an excitation sweep of

T1,2 = 3 to 10Hz in 5s and then back to 3Hz in 5s. This is a typical challenge

faced in real-time substructuring. The rapidly changing transfer system dynamics

mean that the algorithm must constantly adapt to achieve optimal synchronisation.

Figure 4.11 shows the subspace plots for a sine sweep excitation test. The level

of synchronisation for each transfer system is shown for the case when there is

no forward prediction (only the inner-loop proprietary linear control is active) in

Figures 4.11 (al ) and (bl ), and for the case where we use the AFP algorithm as an

outer-loop strategy in Figures 4.11 (a2) and (b2). It is clear that the use of the AFP

algorithm results in a significant improvement in the level of synchronisation. The

constantly changing conditions means that the delay compensation scheme never

reaches steady state values but instead must constantly monitor the synchronisation
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error in order to maintain a high level of compensation. Although the excitation

demands are equal and opposite and the actuators are of the same type, we can

see that the transfer system dynamics vary as shown by the differing adapt ion

characteristics in Figure 4.12 (a). This is a marked difference to the similarity of the

amplitude error shown in Figure 4.12 (b). Again, this highlights the need for the

control of the transfer systems to be decoupled such that their specific mechanical

characteristics can be dealt with independently.
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Figure 4.11: Synchronisation subplots for equal and opposite wall sweep excitation

of r1,2 = 3 to 10Hz in 5s and then back to 3Hz in 5s. Controller parameters N = 4,

n = 10, Ct1,2 = 100, fh,2 = 5, /'1,2 = 2; Adaptive parameters shown in Figure 4.12.
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Figure 4.12: Adaptive parameter characteristics for Figure 4.11 (a2) and (b2).

4.3.7 Substructuring using the AFP algorithm

In order to demonstrate the effectiveness of the AFP algorithm in terms of an outer-

loop strategy for substructuring we shall use the multi DOF case study of § 2.3.2

with various system parameters. In this way we can increase the demands on the

controller by increasing the coupling effect of the substructure.

First, we look at the case of moderate coupling between the transfer systems.

Moderately stiff springs are selected for the substructure of k31,32 = 4750 Nm-1

connected to a mass of m3 = 2.2 kg. A system identification is performed to find

damping constants of C31,32 = 6 Nsm-1 for the substructure. The same parameter

values are used for the numerical models to make the system symmetrical. The

stability of this system has been studied in § 3.2.5 and shown to have a critical

delay value of Tc = 2.Sms. Figure 4.13 shows the steady state results for both

transfer systems of an experimental substructuring test using the AFP algorithm

for a test at 2Hz. Firstly, it can be seen that the substructuring algorithm has

remained stable due to the high degree of synchronisation between the numerical

models and their respective transfer systems, shown by Figure 4.13 (a2) for Transfer

System 1 and Figure 4.13 (b2) for Transfer System 2. In both cases, virtually all the
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Figure 4.13: Comparative synchronisation subplots of a real substructuring test

for wall excitation of Tl = 2Hz and T2 = 2Hz using the AFP algorithm; PI = 10.1,

P2 = 9.6, (71 = 0.99, (72 = 0.98, Ql,2' = 10, i31,2 = 5, /'1,2 = 2, N = 4, n = 16; System

parameters: m1,2,3 = 2.2 kg, k1,2,31,32 = 4750 Nm-1 and C1,2,31,32 = 6 Nsm-1; Critical

delay: Te ~ 2.5ms.

delay has been removed except for a slight increase in synchronisation error caused

by the static friction of the actuator dynamics at the point of direction change, the

deadzones. This synchronisation error, e2, is called the local (control) error of the

substructuring algorithm. The resulting numerical models can then be compared to

their respective emulated dynamics as can be seen in Figures 4.13 (a1) and (b l ),

It can be seen that the synchronisation error, e2, has had a direct influence on

the accuracy of each numerical model -- even though the substructuring algorithm

remains stable there is still a numerical model error, e1' This is highlighted by

the overall substructuring error, called the global error, in Figures 4.13 (a3) and
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(b3), which is a linear addition of the two sources of error, el and e2. However, as

the coupling between the transfer systems is moderate in this case, below 50% of

capacity, the global error is small thus giving an accurate substructuring result.

However, it is typical in real-time substructuring that the actuators are operated

right up to their maximum performance envelope. It is close to and beyond this

envelope that the cross-coupling and other nonlinear effects become significant.

Therefore, we can repeat the previous test with different system parameters and

at a higher velocity such that the coupling is significantly increased. The new
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Figure 4.14: Comparative synchronisation subplots for a real substructuring test

for wall excitation of rl,2 = 8Hz (excitation magnitudes are not equal) using the

AFP algorithm; PI = 9.67, P2 = 9.53, 0'1 = 0.96, 0'2 = 0.95, al,2 = 75, (31,2 = 5,

11,2 = 2, N = 4, n = 10; System parameters: ml,2,3 = 2.2 kg, k1,2,31,32 = 9000 Nm-1

and Cl,2,31,32 = 15 Nsm": Critical delay: Tc ~ 3.3ms.
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system parameters are ml,2,3 = 2.2 kg, k1,2,31,32 = 9000 Nm-1 and Cl,2,31,32 = 15

Nsm-l. Performing a stability analysis for the current system parameters using

DDE-BIFTOOL returns a critical delay of Te = 3.33ms. Figure 4.14 shows the

steady state results at an excitation frequency of 8Hz. Again, it can be seen

that the substructuring algorithm has remained stable due to the high degree of

synchronisation between the numerical models and their respective transfer systems,

shown by Figure 4.14(a2) for Transfer System 1 and Figure 4.14(b2) for Transfer

System 2. In both cases, the AFP algorithm has removed virtually all of the

transfer system delay. However, there is a loss of accuracy in the resulting numerical

models compared to their respective emulated dynamics, shown in Figures 4.14

(a1) and (bl ), producing a large global substructuring error despite the small local

control error. The reason for the extent of this substructuring error in this case is

the magnitude of cross coupling between the transfer systems. Figure 4.15 shows

the manufacture's specification for the actuator capacity envelope for the transfer

systems used in these experiments. The experimental data shown is for Transfer

System 1 (although a similar profile would be observed for Transfer System 2) for

the test shown in Figure 4.14(a). It can be seen that the actuators are operated

g 250

j 200

150

350

400

300

50

100 200 300 400
Velocity (mmls)

500 600 700

Figure 4.15: Actuator capacity envelope for Transfer System 1. Experimental data

shown for the test of Figure 4.13(a) (lOs test data).
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right up to their maximum performance envelope which introduces significant errors

into the substructuring algorithm resulting in the reduced global accuracy. However

despite this, a good local synchronisation is maintained by the AFP algorithm.

However, we note that the numerical model error el often cannot be calculated

when performing a complex substructuring test as the emulated dynamics would

not be known explicitly. Figure 4.16 shows the result of the global error in the

dynamics of the substructure X3 compared to that of the emulated system z; for

the example presented in Figure 4.14. The combination of the local control error

and the numerical model error due to the cross coupling of the transfer systems has

resulted in a non-linear relationship of the substructure dynamics compared to that

of the emulated system. This is an important concept for measuring the accuracy

of a substructuring test as the only error that we have a direct influence on is the

level of synchronisation achieved, e2· The magnitude of the numerical model error,

el and thus the resulting global error is dependent on the capacity of the transfer

systems used to perform the test. Working well within the actuator's performance

envelope will result in limited coupling between the transfer systems and therefore

a correspondingly lower global error, Figure 4.13. For a complex substructured

system this means that the explicit measure of accuracy, e2 (the local control error),

(a) Time Domain Response
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~ 0
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~ -0.1
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Figure 4.16: Substructure global accuracy for the test shown in Figure 4.14.
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(a) Destabilization of the Substructuring Algorithm (b) Transfer System Synchronisation
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Figure 4.17: Destabilization of the substructuring algorithm for the test shown in

Figure 4.14 using the inner-loop controller in isolation.

needs to be assessed in combination with the experimental transfer system profile

(compared to its actual performance envelope) to gain a more complete measure of

the accuracy of a substructuring test.

Figure 4.17 shows the case where the AFP algorithm is not used, such that the

delay experienced due to a standard linear controller (the inner-loop P controller) is

not removed. The substructuring test is started using the emulated force vector to

ensure stability and then switched over to the actual force vector after approximately

3 seconds of run time. We observe the instability of the substructuring algorithm

immediately building in Figure 4.17 (a). It is important to note that it is not the

controller which is becoming unstable as can be seen from Figure 4.17 (b), which

shows a consistent level of transfer system synchronisation throughout the entirety

of the test. This example reconfirms that the removal of the transfer system delay

is essential in ensuring a stable substructuring algorithm.

4.4 Lag compensation via a plant transfer function inversion

Lag compensation can be achieved by using an inverted model of the transfer system

dynamics and has been proposed by Gawthrop et al. [76] and Sivaselvan et al.
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[68]. This type of proposed outer-loop controller compensates for the unwanted

dynamics by applying an inverse transfer function estimation of the transfer system

to the numerical model in a similar vein to that of the delay compensation schemes.

However, this method has the advantage that compensation of transfer-system

dynamics is provided for all frequency ranges. Additionally, this approach can,

in principle, be used in the case when the transfer system dynamics are nonlinear.

Additionally, model reference adaptive control has also been suggested as an outer-

loop strategy by Wagg and Staten [67], Neild et al. [77] and Lim et al. [78]which

demonstrated how lag compensation can be achieved via this approach.

4.4.1 The virtual junction approach

Following the introduction to bond graphs in § 2.4.2, we can readily apply the

technique to substructuring. Given the bond graph of a dynamic system, the set

of components forming the physical substructure is chosen and all bonds external

to this substructure marked, in general there will be N 2: 1 such bonds and the

remaining components will form the numerical substructure. Thus each of the

two substructures has N ports connected by the N marked bonds. In the case

of mechanical systems, each port will correspond to a force-velocity pair; in general

this can be any effort-flow pair.

I Num I

}_If
I I

I Phy I
I I
_______ 1

,.------,
I I

: aNum:

~rl~
: aPhy :
I I
,------;

(a) (b)

Figure 4.18: Substructuring: (a) Model; and (b) Augmented model
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This decomposition is depicted in Figure 4.18(a) where Num and Pby are the

numerical and physical substructures respectively. FN and VN are the force/velocity

pair associated with the numerical substructure and Fp and Vp are the force/velocity

pair associated with the physical substructure. The connecting bond implements the

two interface equations:

(4.33)

The energy bond of Figure 4.18(a) will, in general, be a vector bond corresponding

to N scalar bonds and thus both the numerical and physical substructures may

themselves contain many subsystems. In this case, the quantities in Eq. (4.33) can

be regarded as vectors containing N components. The single DOF substructuring

case study of § 2.3.1 has N = 1, where as the multi DOF case study of § 2.3.2 has

N=2.

As previously stated, it is not possible to connect the two substructures of Fig-

ure 4.18(a) because it is not physically possible to directly apply the signal implied

by the numerical substructure to the physical system. In bond graph terms, the two

systems of Figure 4.18(a) cannot be connected via an energy bond; as indicated in

Figure 4.18(b), augmented versions of the numerical (aNum) and physical (aPby)

substructure are connected using a pair of active bonds. The augmented models are

expanded in Figure 4.19. For the purposes of the work in this thesis it is assumed

that:

SS:[out] SS:[ln]

SS:£Lbin1
, SS1'1~ ,- _

Transfer ' : Sub· ,
.,stem : F. F.' structure ,'r P , ,
Tr. : 7 0 -~:~7"7 Phy'---------' "t vp ' _

------
: Num ;.-1 _...;.[N"J VJ

~m __ ; (,1 r
(a) Numerical (aNum) (b) Physical (aPhy)

Figure 4.19: Augmented substructuring model
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Assumption 2 The causality is such that the physical substructure in Figure 4.18(a)

imposes a force (in general effort) on the numerical substructure.

Assumption 3 The quantity imposed by the physical substructure in Figure 4.18(a)

can be directly measured.

Assumption 4 The quantity imposed by the numerical substructure of Figure 4.18(a)

cannot be directly imposed on the physical substructure but rather via an N -input

u transfer system. In particular, the input u can only be imposed via a transfer

system labelled Tra in Figure 4·19(b).

Assumption 2 is not essential but simplifies the development; Assumption 3 is

required for this work but can be negated by the use of observers; Assumption 4 is

the main issue addressed here.

The fact that the substructured system of Figure 4.18(a) cannot be directly imple-

mented but rather must be approximated by Figure 4.18(b) means that Eq. (4.33)

no longer holds and must be replaced by:

(4.34)
= v,

where F is the force synchronisation error and v is the velocity synchronisation

error. The synchronisation problem is to reduce the two synchronisation errors to

acceptable values, where exact synchronisation corresponds to

{
F =0,

v = o.
(4.35)

In order to achieve synchronisation over the full range of experimental frequen-

cies, the virtual junction approach to control system design can be applied. This

technique was introduced by Gawthrop et al. [102] and experimentally verified by
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Gawthrop [103]in the context of control system design. This technique was modified

by Gawthrop et al. [76] such that it can now be applied to the substructuring

problem; this section gives an overview of the approach.

The virtual junction VJ component appearing in Figure 4.19(a) has three ports

labelled:

[P] carrying the measured signal F from the physical system but imposing 0 signal

onto the physical system;

[T] carrying the control signal u to the input of the transfer system but not carrying

any measurement and

[N] the port to which the numerical system is attached.

The bond graph for the virtual junction is shown in both collocated and non-

collocated form in Figure 4.20 (refer to Gawthrop et al. [102] for discussion on

collocation). The purpose of the virtual junction is to make the input-output

properties of the systems of Figures 4.18{a) and 4.18(b) identical. For example,

'1-' l
r--"~'~t
AI! AI!:mlnua

l I
1 0

1 T
SS:(oul) SS:lInl

(a) Collocated

SS:[P]

(b) Non-collocated

Figure 4.20: Bond graph of the virtual junction (VJ).
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this can be done if the virtual junction implements the equations:

(FN) _ (-1 ~) (FP)
Fr 1 T 1 VN

(4.36)

where vr = TFr. Given the structure of Figure 4.18, there are two restrictions on

the class of systems for which a virtual junction can be successfully implemented:

Assumption 5 The transfer system is stable and has stable zero dynamics.

Assumption 6 Defining erN as the length of the shortest causal path (SCP) between

FN and VN and err as the length of the SCP between Fr and ur, then:

(4.37)

Assumption 5 ensures internal stability and Assumption 6 ensures that the combined

numerical substructure and virtual junction is proper and thus has a state-space

realisation. It is clear from this that an accurate model of the transfer system is

required, the following section has more discussion on this point.

4.4.2 Transfer system identification

The virtual junction approach requires an accurate model of the transfer system to

operate effectively, as can be seen from Eq. (4.36) where T is a transfer function

describing the transfer system dynamics. The equipment used for experimentation is

discussed in detail in § 2.3.3. In bond graph terms it is simplest to model the scalar

transfer system tra as a mass-spring-damper unit, shown in Figure 4.21{a). Thus,

the transfer function used in the virtual junction will be of the form T = 2+8 +k'
mt8 et8 t

For a multi DOF substructuring system, multiple instances of tra are combined in

to form a vector transfer system 'Ira. Figure 4.21(b) shows such a transfer system

for the two-port system of the multi DOF case study (§ 2.3.2).

Unfortunately, AC servos are non-linear [104] and difficult to characterise from first

principles as is the ball screw mechanism. Analysis of experimental measurements
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C:k...1

r
l:m_1

r"";"'~"----" , ----o'l----o' ",,~.,
R:c_1

(a)

SS:[in_.1]--~ tra:m_t1-----"SS:[out_1]

SS:[in_2]---, tra:m_t2--~ss:[out_21

(b)

Figure 4.21: Transfer system bond graph representation: (a) tra component parts;

and (b) vector transfer system (Tra) for multi DOF case study.

of step responses showed that the dynamical response of the servo motor /ball-screw

was indeed dependent on the form of the input signal. Most actuators used in this

context are indeed non-linear and this must therefore be an important consideration

in transfer system design. In particular, it is well-known that the use of feedback

reduces uncertainty and nonlinearity. Thus, a variable-gain proportional digital

controller (similar to that which will be used as the inner-loop controller in the

substructuring algorithm) was implemented with gain kpi' sample interval .6.t = lms,

demand Xdi and described by

(4.38)

where u, is the input to the transfer system and i = [1,2Jdepending on the actuator

in question. The closed-loop transfer system was observed to have a more linear

Closed-loop displacement step response

! :lt.·.·•••~~F:'i•••••••:•••••••t •••••••T••••••:•••••••l••••••••
j :;t/1••••••••i•••••••I•••••••I•••••••I•••••••!.·•••·•I.... 1•••••••1••••••••

: : : . : ; : : :
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Comparison of dere
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Figure 4.22: Identified transfer system (TS1) step responses: (a) Xtl for kpl

0.6,0.8, 1.0; and (b) Xtl (grey) and xn for kPl = 1.0
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response than the open-loop transfer system.

For transfer system 1 {TSd, sequences of input (Xdl) and output (Xl) data were

measured for three values of kpl. Using the "frequency-sampling filter" method

of Wang and Cluett [105], a step response (relating Xdl and Xl) was identified for

each of the three values of gain and plotted in Figure 4.22{a). Although the bond

graph of Figure 4.21{a) does not correspond in detail to the actual transfer system,

it is physically plausible in the sense of Gawthrop [106] and so its parameters can

be estimated using the sensitivity bond graph approach [107]. The mass mn is

known, and so the two remaining parameters (spring stiffness kn and damping Cn

are identified and appear in Table 4.1. We must repeat this identification for the

other transfer system (TS2) as its frictional characteristics are not necessarily the

same regardless of its mechanical similarity. In fact it can be seen from Table 4.1

that the dynamics from TS2 are quite different.

The step response of this physically plausible model Xn is compared with the data-

based step response xn of Figure 4.22{a) for kpl = 1.0 in Figure 4.22{b). The match

is not perfect, but the identified model is a good representation of the linear transfer

system dynamics. A similar result was found for the other transfer system.

I Name " Value I Units
mn 2.2 kg

Cn 150.8 Nsm"!

kn 13618.0 Nm"!

mt2 2.2 kg

Ct2 200.8 Nsm"!

kt2 25902.0 Nm"!

Table 4.1: Estimated transfer system parameters
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4.4.3 Experimental validation

To show the effectiveness of the virtual junction as an outer-loop control strategy,

we perform a simple system identification test at 5Hz as can be seen in Figure 4.23.

The virtual junction is used in conjunction with an inner-loop P controller, with

kpi = 1.0 where i = [1,2] depending on the transfer system in question. To achieve

synchronisation, the actual displacement of the transfer system, Xi, must be equal

to the desired demand, Zi'

(a1) TS 1 - P only (a2) TS 1 - P and Virtual Junction
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j
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Figure 4.23: Synchronisation subplots for a system identification test for each

transfer system at a frequency of excitation of Zl,2 = 5Hz. Algorithm parameters

shown in Table 4.1.
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We again use synchronisation subspace plots (see § 2.5) to compare the effectiveness

of the control algorithm when the virtual junction is utilised, Figure 4.23(a2) and

(b2), to when the inner-loop controller is used in isolation, Figure 4.23(aI) and (b l ).

We can clearly see that the phase delay caused by the mechanical characteristics of

each transfer system has been effectively removed by the inclusion of the virtual

junction in both transfer systems. Comparing the shape of the subspace plots

Figure 4.23(aI) and (bl ) we can see that although the transfer systems are the same

type of actuator they have slightly differing mechanical properties due to differing

frictional characteristics as predicted by the transfer system identification in § 4.4.2.

This again highlights why we must use a separate model for each transfer system in

its respective virtual junctions to account for these mechanical variations.

4.4.4 Substructuring using the virtual junction

The transfer system models found though the system identification process (as

described in § 4.4.2) are fixed throughout the test procedure. This effectively makes

the phase inversion part of the control algorithm a feed-forward process, which

means that it cannot cope with transient or unmodelled nonlinear behaviour. To

show how the virtual junction can be used in the context of substructuring, we

perform an experimental substructuring test but using forces generated by a model

of the emulated system, rather than the actual measured forces. This will ensure

stability as the numerical models will exactly match the dynamics of the emulated

system, such that el = o. This is analogous to pseudo dynamic substructuring where

an estimation of the force is used Donea et al. [44]. The same system parameters of

the moderate coupling example of § 4.3.7 are used for the following tests. Thus, a

very small critical limit of Te :::::::2.5 is defined.

Figure 4.24 shows the results when the wall excitations are not equal and opposite,

thus the transfer systems must now be controlled to a compound sinusoid. We can

see from Figure 4.24{a2) and (b2) that again the inclusion of the virtual junction
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Figure 4.24: Wall excitation of r1 = 3Hz and r2 = 5Hz; Virtual junction

parameters given in Table 4.1; System parameters: m1,2,3 = 2.2 kg, k1,2,31,32 =

4750 Nm-1 and C1,2,31,32 = 6 Nsm=+; Critical delay: Te ~ 2.5ms.
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has a beneficial effect on the synchronisation compared to when just the inner-loop

P controller is used in isolation, Figure 4.24(al) and (bl ), but not to such an extent

as in Figure 4.23. This is due to the transfer system models losing coherence at the

low frequencies. This is the reason we must use the emulated force rather than the

actual force as it is quite clear that the synchronisation of the transfer systems are

both outside the critical limit. If the experimental force was used then this would

lead to instability.
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Figure 4.25: Wall sine sweep excitation of r1 = 1 to 5Hz and rz = 3 to 4Hz in 60

seconds; Virtual junction parameters given in Table 4.1; System parameters: m1,2,3

= 2.2 kg, k1,2,31,32 = 4750 Nm-1 and C1,2,31,32 = 6 Nsm""; Critical delay: Tc ~ 2.5ms.
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We can further see this when we introduce a sinusoidal sweep as the wall inputs.

Figure 4.25 shows the case where we have a sweep from 1Hz to 5Hz for the left

hand wall excitation, rI, and a sweep from 3Hz to 4Hz for the right hand wall
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r2. Although we again see a much higher level of synchronisation when the virtual

junction is included in the numerical model, Figure 4.25(a2) and (b2), we cannot

achieve the high level of coherence to achieve a stable algorithm if the experimental

forces were used. This is again due to the nonlinear characteristics of the transfer

systems not being fully captured by the model in the virtual junction for a very
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small critical limit.

We can see from these results that the phase inversion achieved by the virtual

junction has a significant effect on increasing the synchronisation of the transfer

systems. However, the increase in synchronisation is not sufficient to maintain a

stable substructuring algorithm if the actual measured forces were used in each test

as can be observed from the synchronisation plots exceeding the superimposed limit

of stability. If the damping was increased then it would become possible to achieve

stable substructuring with the virtual junction, however, it is the typical situation

in substructuring that the system has very low damping. The virtual junction's

effectiveness could be significantly increased by replacing the transfer system models

with an on-line system identification. This would close the control loop round the

phase inversion stage of the virtual junction and make the it possible to achieve high

levels of synchronisation for complex inputs, similar to that of the AFP algorithm.

4.5 Conclusion

In this chapter we have discussed two techniques for delay compensation and seen

how they can be applied to the hybrid numerical-experimental technique of real-

time dynamic substructuring. Both have been used to shown how the resulting

delay errors from the inner-loop control of the transfer system(s) can be removed

by using an online technique. In addition to stability, both techniques have benefits

in achieving improved accuracy of the substructuring algorithm. This is in contrast

to the immediate exponential growth observed when the test is carried out using a

standard linear controller in isolation.

Both, lag and delay compensation techniques rely on creating a new reference signal

forward in time from the original numerical model. They differ in the way the

magnitude of this compensation is decided. The basic forward prediction algorithm

and the virtual junction are similar in the fact that they are both fixed feed forward

controllers, when used in conjunction with the inner-loop proprietary controller,

PAGE 144



4.5. CONCLUSION

and thus both suffer from the an inability to compensate for nonlinear or transient

behaviour. The AFP algorithm and the virtual junction are similar in the fact that

they can both cope with frequency dependent plant behaviour. However, as the

AFP algorithm does this in an adaptive manner (as it is effectively an error driven

feedback controller when used as an outer-loop strategy) it does not rely on having

an accurate model of the transfer system dynamics and thus has been shown to

achieve higher levels of synchronisation in the substructuring tests. Additionally, it

provides considerable advantages in terms of flexibility.

However, there are several ways in which the performance of the virtual junction

could be improved. As highlighted in the experimental results, § 4.4.4, an accurate

model of the transfer system is required. This can be directly improved by:

Transfer system modelling: A more sophisticated modelling process is required

to capture the nonlinear characteristics of the transfer system. The bond graph

approach can be used not only for modelling and control design but also for

actuator sizing [108-110J.

On-line System Identification: Replace the fixed models of the transfer system

dynamics by an on-line system identification procedure. If this is evaluated as

part of the numerical model stage then the transient behaviour and changing

nonlinear plant conditions could be effectively controlled.

Although these could increase the performance of the virtual junction, the draw-

back is paid in terms of computational expense. In terms of achieving real-time

control this can have a significant influence as it would restrict the sampling time

choice. A major advantage of real-time substructuring over pseudo-dynamic is the

typically very small sampling time (in comparison to the excitation frequencies) that

allows explicit algorithms to be used (ensuring numerical stability of the integration

scheme). Therefore, significantly increasing the sampling time is detrimental in real-

time control. However, it is unnecessary to demand every requirement out of one
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individual outer-loop algorithm. In fact, it can be beneficial to combine them into

a formal strategy and use them as and when each is required, this is discussed in

more detail in Chapter 5.

Additionally in this chapter, we have described a measure of the accuracy for a sub-

structuring test without having to simulate the complete system. This is significant

as it would be the typical situation in an industrial example of substructuring that

the emulated dynamics are not known, and is in fact why the substructuring tests

are being performed, the case in Chapter 6. The measure is a generic result which

holds for all substructured systems, although the exact relationship between the

numerical model error, el, and the local control error, e2, will be system dependent.

PAGE 14£



Chapter 5

Robust substructuring

SUMMARY: This chapter extends the control strategy applied to real-

time substructuring in order to achieve a more robust algorithm. Each

technique reduces the uncertainty of the delay compensation scheme

and increases the available margin to the critical limit of stability in

compromise for reduced dynamical accuracy of the numerical model.

5.1 Introduction

From the previous chapters, it is clear that instability can still occur even in the

presence of apparently quite small neglected dynamics; in other words, the outer-

loop controller design is not necessarily robust. Robustness is an area that has

been mainly overlooked so far in terms of substructuring. This could be due to the

inherent reduction of the dynamical accuracy of the numerical model (to that of the

emulated system) as a trade off for achieving a robust system. However, when the

uncertainty (of the transfer system dynamics or the substructure response) is high

or the margin to instability is very small it can be essential in achieving successful

experimental substructure testing.

Broadly, the literature outlined so far addresses a) the selection of the inner-loop

controller gains, b) a system identification of the resulting transfer system and c) the
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design of an outer-loop controller to compensate for the transfer system dynamics.

The adaptive nature of the outer-loop controllers proposed in [71, 73, 75] allow

for the compensation of the transfer system dynamics despite uncertainty in the

transfer system model. Although they incorporate some level of robustness due to

this adaptation, they do not explicitly include a robustness compensator proposed

as a separate constituent part.

Gawthrop et al. [74] proposed a four stage methodology to achieving a robust

substructuring algorithm. Within this framework it is possible to combine a number

of different types of controller and utilise them as and when they are required. This

is the key reason why the linear results can be so readily applied to systems where

the experimental substructure is nonlinear. The adaptive nature of these outer-

loop controllers plus the robustness compensation allows the system to cope with

a significant degree of nonlinear "disturbance". We note also that the analysis

applies primarily to the design of the transfer system. In fact we wish to design

a stable robust control strategy to eliminate (or at least mitigate) the effect of

uncertainty and non-linearity from the transfer system - we want to make the

transfer system dynamics linear. The only time we actually require a model of

the (typically nonlinear) physical substructure is in order to apply the robustness

compensation technique based on physical model emulation, as described in § 5.3.3.

In this chapter, the problem of robustness is considered for a generic substructuring

system. In particular, robustness is a particular concern when the structure being

tested is lightly damped or there is a high level of uncertainty in the transfer

system control. Here we examine the robustness of a substructuring algorithm

and describe a strategy for increasing the control robustness for lightly-damped

systems. The effects of the robustness compensators are illustrated using the single

DOF example, with both hybrid numerical-experimental results compared to pure

numerical simulations, by intentionally increasing the uncertainty in the system.
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5.2 Robust transfer system design methodology

Continuing the stability and robustness analysis of § 3.3 leads us onto a methodology

for the design of the transfer system to achieve robust stability. The use of linear

theory - and particularly the assumptions that the experimental substructure and

transfer systems are approximated by linear transfer functions - could at first

sight appear to be a serious limitation of this analysis. However, these results

can be applied to - and in some cases can significantly improve results from -

substructuring tests with nonlinear elements. Using this approach we are able

to get a good comparison of results between three different types of robustness

compensator, described in § 5.4.1 and § 5.4.2.

Using linear analysis, we propose a 4 stage controller design strategy for each transfer

system (which in this work we assume to be an actuator) [74]:

l. Design an (or use the proprietary) inner-loop controller around the actuator

to reduce uncertainty and nonlinearity in the resultant closed-loop transfer

system response.

2. Use system identification to estimate a (closed-loop) transfer function of the

actuator and inner-loop controller which we define as the nominal model. Use

the same system identification results to estimate an uncertainty model for

the transfer system.

3. Use the nominal model from Step 2 to design an outer-loop transfer system

cancellation controller.

4. Use the uncertainty model from Step 2 to design a robustness compensator.

Broadly, Steps 1-3 are addressed in the literature outlined in Chapter 2 and 4. We

now redesign our system identification of § 2.3.4 to fit into this strategy:

Step 1: Proprietary control. The proprietary control for the transfer systems

was addressed in § 2.3.4. In summary, a linear proportional (P) controller is
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used for the inner-loop control with a gain of kp = 1 to give a slightly under

damped system ( = 0.7 - 0.8). In this way we achieve a system which has a

fast transient and dynamic response, good repeatability, reduces the effects of

nonlinearities and lowers the demand on the outer loop controller.

Step 2: Transfer system identification. A closed loop system identification

with this gain setting was then completed, the results are shown in Figure 2.11

(§ 2.3.4). We observe the slightly underdamped response in Figure 2.11(a)

as expected and then the dynamic characteristics of the transfer system in

Figure 2.11(b) over the experimental range of frequencies. From this it is

possible to construct our nominal and uncertainty model for Steps 3 and

4. In addition we observe that the response of the transfer systems can be

approximated to a delay, rather than a lag (frequency dependent delay), for

the experimental range of the actuators (0-15Hz).

Step 3: Nominal model. Using the experimental data from Figure 2.11(b) we

are able to estimate our best fit nominal model - a transfer function that can

replicate the dynamic characteristics of the transfer system the closest. We

again use the Matlab Output Error (oe) function to approximate a 2nd order

fit of experimental response compared to the sine sweep demand, as can be

seen below for each transfer system:

G (8) = -480.98 + 5.651e004
nl 82+ 321.88+ 5.54e004'

G () _ -396.88 + 4.553e004
n2 8 - 82+ 294.98+ 4.46ge004·

(5.1)

(5.2)

Focusing on Transfer System 1 (TS1), as both models are qualitatively similar,

Figure 5.1 shows a comparison of the time domain responses of the experimen-

tal data taken for TS1, X, compared to its nominal model Gn1(8), xm, under the

same excitation conditions. Figure 5.1(b) shows a synchronisation subspace

plot of the actual response of the actuator against the modelled response for

which we see a high level of synchronisation both in terms of amplitude and

delay magnitude.
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(b) Sychronization subspace
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Figure 5.1: Comparison of the time domain responses of TSI x compared to its

nominal model x.; under the same excitation condition, r .

Figure 5.2 shows a close up view of Figure 5.1(a) at both high and low

frequency of excitation in order to see how well the nominal model captures all

the dynamics of the transfer system. Although there is a good match for both

amplitude accuracy and delay magnitude for both conditions there is a signif-

icant difference in the magnitude of some of the nonlinear effects, expressly

shown here by the large deadzone region at low frequency, Figure 5.2(a). We

(a) Low frequency excitation (b) High frequency excitation3~--~----~----~----~--~r.
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Figure 5.2: A comparison of the nonlinear errors experienced at low and high

frequency excitation; experimental data: x, nominal model: Xm, excitation, r.
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can therefore use this information to help create the uncertainty model - in

this case the uncertainty will be repeatable for a given frequency and therefore

should not be mistaken for unknown, it is simply the dynamics which cannot

be modelled satisfactorily by the nominal model.

We now have an alternate choice to using either the AFP or the VJ algorithms

to achieve delay compensation and therefore stability of the substructuring

algorithm. By inverting the nominal model (as long as it can be made proper

by combining it with the numerical model or built from scratch using the

individual state signals) we, in effect, achieve a gross feed-forward cancellation

controller which removes all the modelled dynamics from the transfer system

such that:

(5.3)

where, G; is the actual dynamics of the transfer system and Gn is its nominal

model. This is in fact directly analogous to the virtual junction approach

(§ 4.4.1) to delay compensation but using transfer function representation

rather than a bond graph one.

Step 4: Uncertainty model. Depending on the critical limit of stability, the

remaining dynamics mayor may not send the substructured system unstable.

We cannot compute an explicit model for the unmodelled dynamics as they

are expressly nonlinear, but we must be aware of when they are significant.

Figure 5.2(a) shows us that this is true at low frequency at low amplitude for

these transfer systems

We describe in the next section three potential robustness techniques to be

used as an additional outer-loop control strategy. When analysing a new

substructured system, the most suitable for the application should be selected.

Depending on the purpose, the equipment being used and the type of test being

performed the controllers of Step 3 & 4 can be mixed and matched as necessary. For

example, this highlights the versatility of the AFP algorithm - it can either be used
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as the cancellation controller of Step 3 and/or the robustness compensator of Step

4 at the same time, refer to § 5.5. In fact, the outer-loop compensators discussed

by [71, 73J can also be utilized in this format.

When selecting the appropriate algorithm for Step 3, the cancellation controller, it is

important to consider the characteristics of the transfer system closely. In the case of

the experimental equipment used so far, inverting the second order transfer function

of Eq. (5.1) will require all three physical states of the transfer system (displacement,

velocity and acceleration) in order to achieve the appropriate cancellation. While

we can take advantage of the numerical model to output these states, the higher the

order required the more experiential noise (which is also inherently fed back from the

substructure) is amplified. Additionally, the transfer system is not straightforward

as it describes the complex mechanical internal workings of the actuator, which

is one reason the virtual junction approach could not achieve a sufficient level of

compensation in § 4.4.4. This model inversion process is really only applicable to

simple first order systems, such as hydraulic actuators, where although the capacity

is typically much higher the effects of nonlinear characteristics are far smaller.

5.3 Robustness compensation techniques

We present here three approaches for the robustness compensator, Step 4 of the

robust transfer system design methodology. The trade off for achieving a robust

system is a reduced level of accuracy in the numerical model, the magnitude of

which is discussed in § 5.3.4 and experimentally shown in § 5.4.1 and § 5.4.2. The

following are the proposed strategies:

1. Phase-advance compensation: a-robustness

2. Damping-ratio compensation: (-robustness

3. Physical model emulation: ,),-robustness
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All of these approaches have a single parameter which provides a trade-off between

performance and robustness and are discussed in the following sections § 5.3.1-5.3.3.

Methods 2 and 3 are believed to be new and have been developed specifically with

substructuring in mind [74]; Method 1 is a standard control system technique [99]

but applied here for the first time to substructuring. Method 3 is related to the

Youla parametrisation of all stabilising controllers, Goodwin et al. [99].

5.3.1 Phase-advance compensation: a-robustness

The stability of the example given in § 3.2 and § 3.3 implies that the lack of

robustness is due to the neglected phase lag associated with A(jw) at w = We' One

way to improve robustness is to deliberately introduce phase advance, at the critical

frequency, to A(jw) by interposing a phase advance transfer function between num

and tra. The simplest such transfer function is [99]:

O(s) = as +we
Is+wCl< e

(5.4)

where the parameter a ~ 1. Clearly a = 1 corresponds to a unit transfer function

which has no effect; the maximum phase advance occurs at about W = We' The

maximum phase advance rises to about ~rad = 45° when a ~ 10. Typically, for this

application, 1 < a < 2.

This method has the advantage of requiring only knowledge of We, but has the

disadvantage of distorting the closed loop system.

5.3.2 Damping-ratio compensation: (-robustness

From Figure 3.1O(a) (§ 3.3.3), it is clear that it is the magnitude of the resonant peak

of the closed-loop transfer function IDo(jwe)I that restricts the maximum allowed

value of uncertainty IA(jwe)l. As IDo(jwe)I decreases with increasing damping, a

simple way of trading robustness for stability is to increase the damping coefficients

of the numerical model above their correct values.
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This method has the advantage of requiring no knowledge about the system prop-

erties but has the disadvantage of again distorting the closed loop system.

5.3.3 Physical model emulation: i-robustness

In addition to the numerical simulation of the num subsystem, this approach also

simulates the phy subsystem. As indicated in block diagram form in Figure 5.3(a),

the output of num is fed into both the simulation of phy and the physical subsystem

r-------------------------------------------------

l-y I'"

__.. pes)

I--_F_r----ll:.~O+-----tl~~N(s) ~ -:_-:_cc:. -:_"'--:_cc:. ~ ~ -
:1 Fp
II
II ~ pes) ::
II

-------- 11

:::...1 11,.(s) Nr(s)

Numerical
r--------------------
1 Physical

A(s) _--[~]_

I--------------------------------------------------

(a) Block diagram

FI--_r_.:.o~ P
~ L (s) -y

A(s) -

F

(b) Robustness block diagram

Figure 5.3: ,-robustness.
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phy. In comparison to Figure 3.7 (§ 3.3.1), there are two feedback loops: , times

the output of the physical system and (1 - ,) times the output of the simulated

physical system is fed back to the input of the numerical subsystem. At the two

extremes, , = 0 gives a purely numerical algorithm (and A(8) is not part of the

feedback), whereas, = 1 gives the full hybrid numerical-physical algorithm that

is subject to stability criteria discussed in Chapter 3. When 0 ~ , ~ 1, there is

a smooth transition between the two extremes. However, for each value of " the

nominal closed loop system dynamics are the same given an accurate model of the

substructure.

The block diagram of Figure 5.3(a) can be rewritten in the simplified form of

Figure 5.3(b) where

L 8 _ ,Lo(8)
')'( ) - 1+ (1 - ,)Lo(8)' (5.5)

The robustness results of § 3.3.1 can then be applied to Figure 5.3(b) in a similar

way as to that discussed for Figure 3.7 (§ 3.3.1).

This method has the disadvantage of requiring an accurate model of the physical

system transfer function P(8) but has the advantage of not distorting the closed

loop system. For complex systems, as described in Chapter 6, only an approximate

model of the substructure may be possible and thus distort the closed loop system.

However, the system dynamics should be qualitatively similar such that the tran-

sition to , = 1 can be made without exciting any unwanted/erroneous transient

effects.

5.3.4 Comparison of the robustness compensators

Figure 5.4(a) is the same as Figure 3.1O(a) (§ 3.3.3) except that the results of each

of the three compensators are shown as well. In each case, the stability margin

is significantly increased at the resonant frequency; in each case, f ~ 0.35, about

~:~~= 1.67 larger than the uncompensated case.
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Figure 5.4: Robustness Compensation. (a) The inverse magnitude of D(je.;) is

plotted against je.; on a logarithmic scale for the three robustness compensators

with et = 1.5, (r = 2( and '"Y = 0.5. For comparison two possible uncertainty
" - 1transfer functions e-JWT and l+jwr are plotted for f = 0.35. (b) The lines marked

et, ( and / give the corresponding closed-loop systems for each compensator, in the

presence of e-jwr. The case of no compensator, with (none) and without (Do) delay,

is given for comparison.
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Figure 5.4(b) shows how the nominal model of the closed loop transfer system

(including the time delay) is compensated by the three robustness compensators.

Although, as expected, these three closed-loop responses differ from the nominal,

Do, they are better than the uncompensated case which displays a large resonant

peak indicating near-instability.

The other observation from Figure 5.4(a) is that there are significant differences

between 1/IDI for the three different compensation methods. This will be discussed

in more detail in relation to the hybrid numerical-experimental results shown in the

next section.

5.4 Induced uncertainty

The proposed robustness methods were evaluated using the single DOF example of

§ 2.3.1. The physical substructure had of stiffness k, = 2250Nm-1 connected to a

numerical model with ( = 0.1066 damping. The experimental equipment has been

extensively analysed, see § 5.2, and it is known that a good model for the neglected

dynamics of the system under an inner-loop proportional (P) control with kp = 1 is

a pure delay A(s) ~ e:" where f ~ 0.29. Using the parameters for this example

and Eq. (3.41) from § 3.3.2 the critical value of the delay is found to be fe ~ 0.2.

Therefore this system is unstable without some form of delay compensation because

f > fe, thus we employ the AFP algorithm of § 4.3.6 as Step 3 of the robust transfer

system design. This can then be used to achieve a unit gain response of the transfer

system such that f is in the range 0 ~ f < fe.

5.4.1 Delay uncertainty

To highlight the effects of the three different robustness compensators, we are able to

select a f value as appropriate within the stable range of 0 ~ f < fe using the AFP

controller by altering the synchronisation origin. This is a simple way of varying
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Figure f i:
Te

5.5 0 0

5.6 0.1 0.5

5.7 0.19 0.95

Table 5.1: Experiment Summary

the degrees of uncertainty in the system, and gives an indication of the performance

of each robustness compensator as the degree of uncertainty increases. Table 5.1

summaries the values of f used to generate the hybrid numerical-experimental results

shown in Figures 5.5-5.7. For each f value, Table 5.1 shows the ratio fife to give

an indication of how close the system is to the stability boundary at fife = 1.

Each of Figures 5.5-5.7 shows hybrid numerical-experimental results for four cases:

no compensation, -y-compensation, (-compensation and o-compensation. Each plot

shows three sets of data. Circles correspond to hybrid numerical-experimental

measurements of ID(jw)1 Eq. (3.35) at six frequencies: 3.0Hz, 5.0Hz, 6.5Hz, 7.1Hz,

8.0Hz and 9.0Hz. The solid and dashed lines are the theoretical values of ID(jw)1

(with A(s) ~ e-ST) Eq. (3.35) and IDo(jw)1 (where A(s) = 1) Eq. (3.37) from § 3.3.1

respectively.

Figure 5.5 shows the case where f = 0 (i.e. the delay compensation method is

removing the full 9.4ms of delay in the system). In this case ID(jw)1 and IDo(jw)1

are indistinguishable and the uncertainty is very low such that A ~ 1 and IDI ~ IDol.

With no compensation (Figure 5.5 (a)) there is good agreement between the hybrid

numerical-experimental results and IDo(jw)l, indicating (as expected) that for this

hybrid test setup the delay compensation method of [75Jprovides a significant degree

of robustness without an additional compensator. Figure 5.5 (b) shows the ,-

compensation case where there is no distortion of IDo(jw)l, and close agreement

with the hybrid results. Figures 5.5 (c) and (d) show the (-compensation and Q-

compensation respectively. In each case the robustness is improved - indicated

by an increased stability margin - but IDo(jw)1 is distorted. Agreement with the
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Figure 5.5: Experimental Results: f = 0.00. In this case the uncertainty is very

low so A ~ 1 and IDI ~ IDol in all four cases. -y-compensation does not distort IDI
but ( and a-compensation do. The experimental fit is good in each case.

hybrid test results is good although the a-compensation looses some correlation near

resonance.

Figure 5.6 shows the case where f = 0.1. This case corresponds to the situation

when the delay compensation method is not fully compensating for the delay error.

This can be seen in Figures 5.6 (a)-(d) as the discrepancy between IDI and IDol
close to resonance. Now without any robustness compensation, the resonance peak

ID(jw)1 becomes significantly exaggerated near the resonant frequency compared to

the nominal case IDo(jw)l. In Figures 5.6 (b)-(d) the three robustness compensators

results are shown. The ,),-compensation results give a significant improvement in

reducing ID(jw)1 to IDo(jw)l. The (-compensation and a-compensation also achieve
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Figure 5.6: Experimental Results: T - 0.10. There is a small amount of

uncertainty due to the neglected delay so A =1= 1 and IDI =1= IDol in each case.

No compensation leads to an exaggerated resonant peak which is reduced by each

of the three compensators. The experimental fit is good in each case.

the same effect, but with significant distortions in the IDo(jw) I transfer function. In

all three compensation cases the hybrid results match well with ID(jw)l.

Figure 5.7 shows the case where f = 0.19. This case corresponds to the situa-

tion when the delay compensation method is stabilising the system, but leaving

a significant delay error - corresponding to a higher degree of uncertainty in the

system. This can be seen clearly in Figure 5.7 (a) where now the discrepancy between

ID(jw)1 and IDo(jw)1 is even more pronounced close to resonance. The compensation

methods shown in Figures 5.7 (b)-(d) all help to reduce this significantly. As with the

previous example the hybrid results correlate well with ID(jw)1 across the frequency
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Figure 5.7: Experimental Results: f = 0.19. There is a large amount of uncertainty

due to the neglected delay so A =I- 1 and IDI =I- IDol in each case. No compensation

leads to an almost unstable system with almost no damping and an excessive

resonant peak which far from the nominal. Each of the three compensators stabilises

the system giving a peak much closer to the nominal. The experimental fit is good

in each case.

range considered.

5.4.2 Model uncertainty

In § 5.4.1 we explicitly know the level of uncertainty (in terms of the magnitude

of transfer system delay remaining) as we know a good nominal model for the

transfer system to be a pure delay of 9.4ms when the controller gain is set at

kp = 1. The consequence of reducing the accuracy of this nominal model, such
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that a controller gain of kp = 0.5 was used for example, would be to introduce an

unknown level of uncertainty into the substructuring algorithm. As a result, an the

unknown magnitude of delay will now remain in the system. The need for robustness

compensation is therefore greater as the margin to instability is unknown. This is

the typical situation when the dynamics of the transfer system are complex - we

can never have 100% confidence in the accuracy of the nominal model so therefore,

when the margin to instability is small the need for robustness increases due to

the level of unknown/unmodelled dynamics. As our understanding of the system

increases the level of robustness can be reduced until it has zero effect, the ideal

situation. This can be done either during the initialisation of an experiential test

(and then kept at a constant level) or more likely, changed online such that it is

only utilized when it is needed as discussed in the next section.

5.5 An over compensation strategy using the AFP algo-

rithm

A fundamental difficulty for substructuring is that it is only safe to start an experi-

mental test from a region of stability, otherwise the unstable growth may make the

test impossible or damage the substructure. This is of particular importance when

the substructured system is lightly damped as the magnitude of unstable growth will

be larger. Due to the versatility of the AFP algorithm we can formulate a strategy

that combines both robustness and accuracy for such a situation. Ifwe think of delay

as adding negative damping in our system [61], then over compensating (predicting

too far forward in time) will have the opposite effect of increasing the damping.

This will give a similar kind of damping to that of the ( -compensator (§ 5.3.2) but

combining Steps 3 & 4 of the robust transfer system design methodology.

It is therefore a major concern for the performance of any delay compensation

algorithm to find the interval of permissible magnitudes of compensation where

the substructured system is stable. Pragmatically, when starting a substructuring
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test for the case T > Te we can initiate the test using a numerical estimation of

the force (r-compensator, § 5.3.3) and switch over to the measured force when the

control algorithm has achieved a high level of synchronisation. However, ideally the

test should be initiated using the measured force itself to retain the true structural

characteristics.

To highlight the merit of this approach, we use the very lightly damped single

DOF system of § 3.4.1. This system only has a damping value of , = 0.0213

which gives the system a critical delay of Te = 1.335ms when p = 1 (k = k, =
2250N/m). Figure 5.8 demonstrates the stability restrictions imposed on the AFP

algorithm by the DDE system for the two pairs of algorithm parameters Nand n for

a variable p magnitude. To this end, we use DDE-BIFTOOL to find the eigenvalues

of the DDE model explicitly including the delay compensation scheme to find the

forward prediction stability regions. Figure 5.8{a) represents the stability of the

AFP algorithm for a fitting polynomial PN,n,tlt of order N = 2 for n = 10 previous

values of z, while Figure 5.8{b) corresponds to a polynomial of order N = 4 fitted to

n = 16 previous values (~t = 1ms). Both prediction schemes are compared to the

exact prediction (grey line) of F = - ksz{ t + p - T) within the interval from -20 ms

to 45ms. If the real part of the eigenvalue is positive then the system is unstable.

The dashed lines highlight the parameter value where the forward prediction equals

the actual delay in the system, p = T = 9.4ms. The polynomial forward prediction

gives, in general, only a finite interval of stability for p. For low order schemes the

interval of permissible p is large. Stability ranges from p ~ T - Te = 8.065ms to

Pmax ~ 41ms for N = 2, n = 10 (as in Figure 5.8(a1)). This defines the other

critical limit, the forward critical limit Tt as discussed in § 2.1 Table 2.1. Thus, for

low N the AFP algorithm can start with an initial guess for P that is substantially

larger than the delay T. Increasing the order N of the fitting polynomial improves

the accuracy of the prediction as can be seen from the improved frequency accuracy

of the polynomial fit shown in Figure 5.8{b2) compared to Figure 5.8{a2). However,

in general, this shrinks the range of forward prediction p that is permissible for
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Figure 5.8: Eigenvalues for two delay compensation schemes compared to the exact

value z( t - T +p) (grey line); dominant eigenvalue is highlighted in bold. The dashed

lines (circles on frequency plots) highlight where the forward prediction equals the

actual delay of the transfer system, p = T = 9.4ms.

stability giving a new tt- Figure 5.8(bl) shows that the maximal permissible p is at

Pmax ~ 15ms for N = 4, n = 16. Near Tj another eigenvalue of the system becomes

dominant and unstable but is dependent on the delay compensation parameters

and/or the system properties, rather than the system alone as for Te.

Obviously, it is preferable to start the test with the optimum level of compensation,
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but when we do not have a good understanding of the substructure characteristics,

or of the transfer system(s) we are using, it could be very difficult to estimate this

value. Therefore, if the delay 1" is not known and expected to be larger than the

critical delay of the substructured system, the AFP algorithm should start with

a low order N to give a large range of stable forward prediction p and to over-

compensate the initial guess, as this will give the largest stable region as shown by

Figure 5.8. Once the adapt ion algorithm is close to convergence, we then increase

the prediction order N to improve the accuracy of the substructuring experiment.

We note that the permissible order of N is also limited by the noise fed back from the

load transducer as well as Pmax > 1"-1"c. Additionally, if delay is equivalent to adding

negative damping in our system, then over-compensating (predicting too far forward

in time) will have the opposite effect by increasing the damping. If we control to

a shifted synchronisation origin, such that we now take 1" = -lms as having zero

synchronisation error, for example, this will have the effect of over-damping the

dynamic response of the numerical model (analogous to the <-compensator). Firstly,

this makes the numerical model slower to react to sudden state changes, i.e., high

frequency noise fed back from the substructure, and, secondly, will mean that there

is greater margin before the critical delay limit is reached. This can be seen in

Figure 5.9, where panels (a) shows the case of no delay compensation, (b) the case

for under-compensated (zero initial compensation) and (c) the over-compensation

method with shifted synchronisation origin of 1" = -lms.

It is noteworthy that although under-compensated, the substructured system re-

gained stability after approximately 2s in Figure 5.9(b). However, once stable the

unwanted oscillations take a further 3s to die out. It is not always possible for stabil-

ity to be regained, in this case the controller adapts faster than the unstable growth.

The consequences of such unknown dynamics could significantly affect the structural

properties of the substructure and possibly lead to failure. The over-compensation

method is advantageous as the substructuring algorithm is always stable (under the

maximum limit) as shown in Figure 5.9(c2), and therefore, has a correspondingly
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Figure 5.9: Experimental numerical model accuracy for differing control

methodologies: (a) no delay compensation, (b) under-compensated (zero initial

compensation), (c) over-compensation method (shifted synchronisation origin of

T = -lms). Controller parameters are N = 2, n = 10.

high numerical model accuracy throughout, Figure 5.9(c1). The frequency at which

instability is observed is shown in Figure 3.13. There is little difference in the

spectral frequency response between the emulated dynamics (calculated numerically)

and the over-compensation method (measured experimentally) whereas there is an

increase of approximately three orders of magnitude at a frequency of 7.lHz when

the substructured system is under-compensated (WI = 7.lHz from Eq. (3.22)).

This is in contrast to the case of no delay compensation for which we see the

PAGE 167



CHAPTER 5. ROBUST SUBSTRUCTURING

103

102

1101

Q;~e 10°
Ql
(J)
e
§.10-1
Qla:
10-2

10-3
0 2

"I \
I \
I

- Emulated (Numerical: t = 0)
- Over-Compensation Method
- - Under-Compensated

4 6 7.1
Frequency (Hz)

8 10 12

Figure 5.10: Comparison of the frequency spectrum for the experimental

substructured responses (6s test data, see panels (b) and (c) of Figure 5.9) to the

Emulated system.

expected exponential growth and necessity to terminate the test after 2s to prevent

substructure damage in Figure 5.9(al).

5.6 Conclusion

It has been shown that the hybrid simulation of lightly-damped dynamical systems

using numerical-experimental real-time substructuring is sensitive to both transfer

system delay and uncertainty. The four stage robust transfer system design method-

ology presented in here is designed to reduce both of these destabilizing effects.

Three methods for reducing the effect of uncertainty are given: ,-compensation,

(-compensation and a-compensation. We use both theoretical and experimental

results to show that each is effective in increasing robustness to uncertainty. Each

has the following strengths and weaknesses:

-y-compensatlon has the advantage of not modifying the overall system response

but is based on having an accurate model of the physical system - this was

available for the experiment considered here but would not generally be the
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case. In less well known experimental equipment, details of A(s) would be

unknown and thus initial experiments would use I = O. I could then be

increased as more experimental results allowed reduction of the uncertainty

encapsulated in A(s).

<:-compensation does not require a model of the physical system but does change

the overall system characteristics; however, it has a clear physical meaning as

a numerical model with an increased damping ratio.

a-compensation again does not require a model but does distort the the overall

system characteristics significantly.

A pragmatic view of robustness is that the amount of compensation would be large

for initial experiments, but would reduce as uncertainty was reduced. For example,

using an advanced system identification technique as suggested by Gawthrop et al.

[76]or when using an adaptive cancellation controller for Step 3 of the robust transfer

system design. It should be noted that the lower the damping in the system the

greater the destabilizing effect both the transfer system delay and uncertainty have

on the substructuring algorithm.

Furthermore, we have proposed an additional strategy that can combine both the

cancellation controller and the robustness controller by making use of further DDE

analysis of the system using DDE-BIFTOOL. The proposed over-compensation

method for substructuring has a number of distinct benefits. The margin to the

critical limit of stability is extend and the effects of high frequency noise are reduced.

Additionally, the test can be initiated from and entirely operated within a stable

region of the substructuring algorithm. These factors become increasingly important

as the damping of the structure is reduced or the stiffness is increased.
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Chapter 6

An industrial example of

substructuring

SUMMARY: This chapter describes the current state of the art re-

search in the field of real-time dynamic substructuring. We demonstrate

the broadening of the real-time technique by moving away from large

scale seismic testing to 'small' scale component testing. The knowledge

gained from the conceptually simple case studies is applied to a real

engineering problem of a helicopter lag damper unit. An eight mode

numerical model of a helicopter blade is excited using flight data and

connected to the real damper unit via a 50kN actuator.

6.1 Introduction

A helicopter is an aircraft which is lifted and propelled by one or more large

horizontal rotors (propellers). Helicopters are classified as rotary-wing aircraft

to distinguish them from conventional fixed-wing aircraft. The word helicopter

is derived from the Greek words helix (spiral) and pteron (wing). The engine-

driven helicopter was invented by the Slovak inventor Jan Bahyl. The first stable,

fully-controllable helicopter placed in production was invented by Igor Sikorsky.
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Compared to conventional fixed-wing aircraft, helicopters are much more complex,

more expensive to buy and operate, relatively slow, have poor range and restricted

payload. The compensating advantage is maneuverability; helicopters can hover in

place, reverse, and above all take off and land vertically. Subject only to refuelling

facilities and load/altitude limitations, a helicopter can travel to any location, and

land anywhere with a clearing a rotor disk and a half in diameter.

A conventional aircraft is able to fly because the forward motion of its angled wings

forces air downwards, creating an opposite reaction called lift that forces the wings

upwards. A helicopter uses exactly the same method, except that instead of moving

the entire aircraft, only the wings themselves are moved. The helicopter's rotor can

simply be regarded as rotating wings. Turning the rotor generates lift but it also

applies a reverse force to the vehicle, which tries to spin the helicopter fuselage in

the opposite direction to the rotor, this is called torque reaction. There are several

possible design layouts for overcoming this problem, the most common design is

the Sikorsky-layout (used by approximately 95% of all helicopters manufactured to

date) - using a smaller vertical propeller mounted at the rear of the aircraft called

a tail rotor.

Useful flight requires that an aircraft be controlled in all three dimensions. In a

fixed-wing aircraft, this is "easy"; small movable surfaces are adjusted to change

the aircraft's shape so that the air rushing past pushes it in the desired direction.

In a helicopter, however, there often is not enough airspeed for this method to be

practical. For rotation about the vertical axis, yaw, the pitch of the tail rotor alters

the sideways thrust produced (dual-rotor helicopters have a differential between the

two rotor transmissions that can be adjusted by an electric or hydraulic motor to

transmit differential torque and thus turn the helicopter). For pitch (tilting forward

and back) or roll (tilting sideways) the angle of attack of the main rotor blades is

altered or cycled during the rotation creating a differential of lift at different points

of the rotary wing. More lift at the rear of the rotary wing will cause the aircraft

to pitch forward, an increase on the left will cause a roll to the right and so on.
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In the early days of helicopter development, there were six fundamental problems:

1. Understanding the basic aerodynamics of vertical flight.

2. The lack of a suitable powerplant (engine).

3. Minimising structural weight and engine weight.

4. Counteracting rotor torque reaction.

5. Providing stability and properly controlling the machine.

6. Conquering the problem of high vibrations.

Over the last forty years, sustained scientific research and development in many

different aeronautical disciplines has allowed for large increases in helicopter per-

formance, lifting capability of the main rotor, high speed cruise efficiencies, and

mechanical reliability. Continuous aerodynamic improvements to the efficiency of

the rotor have allowed the helicopter to lift more than its empty weight and to

fly in level flight at speeds in excess of 400 km/h. The improved design of the

helicopter and the increasing viability of other vertical lift aircraft such as the tilt-

rotor continue to advance as a result of the revolution in computer-aided design and

manufacturing and the advent of new lightweight composite materials. However,

since the 1980s, there has been an accelerating scientific effort to understand and

overcome some of the most difficult technical problems associated with helicopter

flight, particularly in regard to aerodynamic limitations imposed by the main rotor,

points 5-6.

In this chapter, we discuss the origins of some of these highly complex problems

and show how we can use real-time dynamic substructuring to better understand

them in order to potentially reduce or remove them completely. We focus on one

main feature, the lag damper, which is found on all fully-articulated helicopters.

This damper is critical component with respect to the stability of the aircraft by

controlling blade motion in a way to avoid resonances. Similarly, as a component
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of the rotor hub dynamic system, the damper influences the general vibration char-

acteristics of the entire aircraft. Kinematically, the damper helps control and react

loads generated by blade lead-lag motion. The damper loads are typically transferred

back into the airframe through the rotor hub where the "fixed end" of the damper

is attached. Until now, only numerical simulations of how these dampers affect the

helicopter's rotor dynamics have been utilized. Initially, these were linearized or

simplified models of the damper's dominant characteristic behaviour. Recently, this

work has been extended by Eyres [2]who developed a full parametric model of the

damper excited by recorded flight data in order to try and capture its nonlinear

behaviour. While this provides a far more accurate understanding of the damper's

performance it is still only a numerical simulation with only a limited ability to

validate its accuracy. The work presented in this chapter builds on this basis, using

a flight certified lag damper as the experimental substructure and a real-time version

of the blade dynamics as the numerical model (excited by the same flight test data).

6.2 Helicopter dynamic issues

Fixed wing aircraft are designed to be inherently stable. If a gust of wind or a

nudge to one of the controls causes a fixed wing aircraft to pitch, roll, or yaw, the

aerodynamic design of the aircraft will tend to correct the motion, and the aircraft

will return to its original attitude. A small, fixed wing aircraft can be stable enough

that a pilot can let go of the controls while looking at a map or dealing with a radio

for example and the plane will generally stay on course. In contrast, helicopters are

highly unstable. Simply hovering requires continuous, active corrections from the

pilot. When a hovering helicopter is nudged in one direction by a gust of wind, it

will tend to continue in that direction, and the pilot must adjust the specific control

to correct the motion.

Adjusting one flight control on a helicopter almost always has an effect that requires

an adjustment of the other controls. Moving the cyclic (the control column) forward
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causes the helicopter to move forward, but will also cause a reduction in lift, which

will require extra collective for more lift. Increasing the collective will reduce rotor

angular velocity (RPM), requiring an increase in throttle to maintain constant rotor

RPM (all helicopters are specifically designed to operate at a constant RPM).

Changing the collective will also cause a change in torque, which will require the

pilot to adjust the foot pedals.

The remainder of this section will outline the dynamic issues that lead to the inclu-

sion of a mechanical damper on the main rotor blade of an articulated helicopter.

6.2.1 Unbalanced lift

As a helicopter moves forward, the rotor blade on one side moves at rotor tip speed

plus the aircraft speed and is called the advancing blade. As the blade swings to

the other side of the helicopter, it moves at rotor tip speed minus aircraft speed and

angular ~
velocity, Q i

,,,
,

linear
velocity, V

(flight 1
direction)

+
(b)

fllrrrrll11'J
region of

reverse flow

Figure 6.1: Flow velocity vectors on a rotor in forward flight as seen from above.

(a) Flow due to rotating blades in position perpendicular to flight direction; (b) Flow

over blades due to forward flight; (c) Combination of rotating motion and forward

flight flow vectors.
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is called the retreating blade. This is illustrated by the flow velocity vectors shown

in Figure 6.1. The superimposed flow on the retreating side leads to a region of the

rotor where the flow over the blades is in the opposite sense to the rotation of the

blade - a reverse flow region.

To compensate for the added lift on the advancing blade and the decreased lift on

the retreating blade, the rotor is allowed to flap. By allowing the advancing blade

to flap upward, and the retreating blade to flap downward, it changes the angle of

incidence on both rotor blades which balances out the entire rotor system. There

are a few ways to allow for blade flapping. On fully-articulated rotor systems, the

blades are allowed to flap on hinges, whereas on semi-rigid rotor systems the whole

hub swings up and down around an internal bearing called a trunnion.

6.2.2 Fully articulated helicopters

Fully articulated rotor systems allow each blade to feather (rotate about the pitch

axis to change lift), lead and lag (move back and forth in-plane), and flap (move up

and down about an inboard mounted hinge) independent of the other blades. Fully

articulated rotor systems are found on rotor systems with more than two blades.

As the rotor spins, each blade responds to inputs from the control system to enable

aircraft control. The centre of lift on the whole rotor system moves in response to

these inputs to effect pitch, roll, and upward motion. The magnitude of this lift

force is based on the collective input, which changes pitch on all blades in the same

direction at the same time. The location of this lift force is based on the pitch and

roll inputs from the pilot. Therefore, the feathering angle of each blade (proportional

to its own lifting force) changes as it rotates with the rotor, thus is called "cyclic

control" .

As the lift on a given blade increases, it will want to flap upwards. The flapping

hinge for the blade permits this motion, and is balanced by the centrifugal force

of the rotating blade, which tries to keep it in the horizontal plane. However,
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some motion must be accommodated. The centrifugal force is nominally constant,

however the flapping force will be affected by the severity of the manoeuvre (rate of

climb, forward speed, aircraft gross weight).

As the blade flaps, its centre of mass moves closer in plane to the hub which

introduces large Coriolis forces': A blade can be modelled simply as a particle

at the blades centre of mass rotating about a central vertical axis at the blade root.

When the blade flaps the effect would be to accelerate the particle upwards and

move the centre of mass toward the axis of rotation relative to the horizontal plane.

There must therefore be an acceleration (resulting in the Coriolis force) in the plane

of rotation if momentum is to be conserved. If the blade were rigid in this horizontal

plane then there would be a large force generated at the hub causing vibration and

possible damage to the blades or attachments. To relieve this force a second hinge

can be introduced to the blade, in a similar way to the flapping hinge, to reduce the

moment at the hub. The blade is then allowed to move in the plane of the rotor disc,

otherwise known as the lead-lag plane, so the hinge is called the lag hinge. However,

in larger helicopters a mechanism to absorb and control this movement is required.

Typically, this is done using a hydraulic damper to limit the resultant movement, see

§ 6.2.3 and § 6.3. Any time that some blades are flapping up higher than others, the

centre of gravity of the rotor head will not align with its true physical axis. This will

cause vibration, as forces acting on the rotor mass try to find a more acceptable axis

point; this is called the Hookes Joint Effect. Additionally, A third hinge is included

to allow the blades to change pitch, called the feathering hinge and is controlled by

the main pilot controls by means of a pitch horn. It should be noted that all three

degrees of freedom are coupled.

IThe Coriolis forces is named after Gaspard-Gustave Coriolis, who introduced the concept in

1835 to allow Newton's laws of motion to be applied in the context of rotating bodies.
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6.2.3 Inclusion of a lag hinge

The inclusion of the lag hinge solves the problem of the Coriolis forces being trans-

mitted to the hub. It does however introduce problems of its own due to the lack

of natural damping in the lag (rotor disc) plane. As stated in § 6.2.2, the flapping

motion is inherently stable due to the centrifugal force of the rotating blade. This

is not the case with the lead-lag plane because the only force on the blade in the lag

plane is the aerodynamic drag of the blade, which is small compared to the other

forces on the blade. Thus the inclusion of a mechanical damping device is required.

There are many forms a lag damper can take, including constant force, elastomeric,

variable orifice and controllable fluid dampers.

Without a lag damper when the helicopter starts up and the blades increase in

rotational frequency, they pass through a range of angular velocities, some of which

can cause problems if they are allowed to resonate with the fuselage. The situation

can arise where the blades bunch together as they rotate. As a result the centre

of mass of the helicopter will move in phase with the rotational speed of the rotor.

In the worst-case scenario, the rotation of the blades can become in phase with

the natural frequency of the helicopter - the lag mode becomes in phase with

the fuselage and/or landing gear. The oscillations of the blades can increase in

magnitude rapidly up to the point where the helicopter can topple over due to

the movement of the centre of mass. This condition is known as ground resonance

because the critical mode is typically an oscillation of the fuselage on the landing

gear while the tyres are touching the ground [111]. Additionally, ground resonance

is also a hazardous condition during touchdown. A series of shocks to the landing

gear can pass through to the rotor disk and cause an imbalance in the rotor system.

Under extreme conditions, the imbalance causes violent oscillations that quickly

build and result in catastrophic damage of the entire airframe. In some cases,

complete destruction occurs, e.g. body panels, fuel tanks, and engines are all ripped

from their mountings.

PAGE 178



6.3. THE EH101 LAG DAMPER

There is an additional resonant condition when the helicopter is in flight called air

resonance. In this case, the fuselage is no longer rigid and the problem occurs when

the cyclic lag mode becomes in phase with the coupled flap modes and fuselage

modes of vibration, however, fully articulated helicopters tend not experience air

resonance [112].

As with the inclusion of a lag hinge, the lag damper introduces problems of its own.

Although the lag damper can damp out some additional undesirable interactions and

vibrations during flight, it is a closed system and absorbs a large amount of energy

which is dissipated as heat. Therefore, the passive lag damper actually detracts from

the helicopter performance during steady state flight but is essential for take-off and

landing so cannot be removed.

6.3 The EHIOI lag damper

Early helicopters used frictional lag dampers to prevent ground resonance. A friction

damper simply attempts to generate a constant force opposing the motion of the

blade which is independent of velocity and frequency. However, the effective damp-

ing of the friction damper decreases with an increase in lag motion [113]. While

the damping is acceptable for small amplitude lag motion, at higher amplitudes the

damper does not generate enough force. This can be overcome by using multiple

layers of various frictional materials. However, this adds to the complexity of the

device especially as the damping force is dependant on the ambient temperature

and humidity. Additionally, there is a possibility that the blades will stick when

changing direction due to the discontinuity at zero velocity. This can cause a severe

oscillation in the blade and potentially cause significantly damage the helicopter.

To overcome these problems, hydraulic lag dampers were developed in the 1960's

that created a force proportional to the square of the lag velocity by forcing fluid

through an orifice. The damper studied here is one of the latest generations of

such a viscous fluid damper; it is a flight spec lag damper off an AgustaWestland
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Lag hinge

Flap hinge

Central Hub Lag damper

"Fixed" end

Figure 6.2: Close-up of the EHlOl hub rotor system.

EHlOl helicopter". Figure 6.2 shows the lag damper in situ on the helicopter rotor

hub. The main body of the damper consists of a cylindrical sealed chamber with

a piston and rod passing through it. The damping force is generated by creating

a pressure difference between the two sides of the piston. As the piston rod moves

through the chamber, fluid is forced past the piston to the other side either round

the outside of the piston or through the orifice itself. However, it is assumed

that the only flow around the sides of the piston is for lubrication purposes and

is negligible compared to the flow through the pistons orifice. In this way, a steep

force-velocity characteristic can be generated for low velocities to approximate the

2The AgustaWestland EHIOI is a medium-lift helicopter originally developed as a joint venture

between Westland Helicopters in the UK and Agusta in Italy for military applications but also

marketed for civil use. In 2001 AgustaWestland signed a deal with Lockheed Martin to market

the aircraft in the US under the designation USlOl. It won the bid for the VIP and "Marine One"

Presidential transportation (roles currently carried out by H-3 Sea King or the smaller UH-60

Black Hawk).
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Orifice

Blow-off
valve 1

Piston

Blow-off
valve 2

Chamber2Chamber 1

Figure 6.3: Cross-section of the hydraulic lag damper, including the relief valve

orientations - Adapted form Eyres [2].

change in force of the friction damper as the blade velocity changes sign. The

characteristic is then continuous at zero velocity and so removes the possibility of

the blade sticking. Hydraulic dampers require relief valves to produce a useful force-

velocity characteristic. The EHIOl lag damper makes use of two valves connected

to the damper casing and are operated by linear springs, one for each direction of

motion of the piston. The precompression of the spring defines the force or pressure

at which the valve will open. The valve dimensions and characteristics will determine

the force-velocity gradient when the relief valve is open. A schematic of the damper

modelled is shown in Figure 6.3.

The resulting difference in pressure between the two sides of the piston generates a

force on the piston and hence the rod. In the case of the lag damper the motion of

the blade relative to the hub will cause the damper rod to move through the damper

casing. The force generated by the damper will act on the blade in the opposite
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Figure 6.4: Comparison of the damping characteristics of an idealized friction

damper and an idealized hydraulic damper with relief valves

sense to the motion, reducing the motion of the blade in its lag degree of freedom.

The damper is attached to the blade and hub using universal joints. The force on

the rod is thus assumed to act purely along the axis of the rod.

A schematic comparison between the force-velocity profiles of an idealized friction

damper and an idealized hydraulic damper can be seen in Figure 6.4. It should be

noted that the idealized characteristic behaviour of the hydraulic damper does not

take into account all the nonlinear nature of the fluid or the spring-loaded relief

valve dynamics as will be seen in § 6.4.1. In fact, it is this complex behaviour which

makes the damper so hard to model numerically.

6.4 Experimental set-up

The constituent parts of the experimental set up are similar to that described in

§ 2.3.3, however, in order to achieve the performance required it has been necessary

to significantly upgrade each of them. Figure 6.5 shows the experimental test

rig setup including the EH10l lag damper. A standard size "hard hat" has been

introduced for scale, in conjunction with Figure 6.2 (where we see the lag damper
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Figure 6.5: Experimental test rig setup for the EH101 lag damper; Note, the

standard size "hard hat" for scale.

in situ) the reader can gain some understanding of the magnitude and capacity of

the EH101 helicopter and therefore the damping forces which must be achieved by

the lag damper.

Using flight data and information gained from previous investigations into the damper

[2], the operational performance criterion for steady state flight at 84knots is a mag-

nitude of 15kN of damping force required at a maximum velocity of approximately

300mm/s. It is a fundamental characteristic that there is drop off in load capacity

of an actuator as the velocity of the piston is increased, as discussed in § 4.3.7

(Figure 4.15). Also in that section, we discussed the relationship between the local

and global error in terms of a substructuring algorithm. In order to keep the global

error as close to the local error as possible (i.e. achieve the most accurate test
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possible), the actuator should not be driven far in excess of 75% of its capacity.

In order to achieve the requirements for these tests, it has been necessary to use

a 50kN hydraulic actuator with two servo Moog valves (in parallel) as shown in

Figure 6.5 to achieve a maximum velocity of 500mm/s. The actuator is plumbed

into the hydraulic ring main which can deliver a capacity of 486 l/min of oil at a

pressure of 200 bar to the lab (only 100 l/rnin of oil is required for the test). This

is done through pressure, return and drain high pressure hydraulic pipes connected

to an accumulator, which in turn is connected to the ring main. As this is only

a single actuator experiment only one channel is required on the accumulator. An

internal LVDT (Linear Variable Differential Transformer) is used to measure the

displacement of the actuator piston which has a ±0.01 % linearity error on full scale

deflection of 140mm. The control of the actuator will be discussed later in the

section.

The physical rig itself is quite simple. Two 100kN steel supports (painted green in

Figure 6.5) are bolted directly into a steel T-slot in the "strong" floor of the lab with

the central axis of the actuator and damper aligned. The base of the actuator is

rigidly bolted into one support and then supported by a vertical stand. This stand

has a height adjustment feature allowing for alignment and additionally ensures that

the actuator does not vibrate during testing. A ±100kN Instron Dynacell dynamic

load cell is then rigidly attached to the actuator piston. A yoke is required to connect

the damper to the active part of the load cell. This extra mass is then included

within the substructure and can skew the inertial response of the substructure, in

this case the lag damper piston, such that Feell = Fdamper + maddedapiston' The yoke

can be seen in Figure 6.5 and is labelled as added mass. The Instron Dynacell is a

load measurement device which automatically compensates for load errors induced

through inertia by automatically tuning a compensation factor klc which is used in

conjunction with an internal axially mounted accelerometer alc. Thus,

(6.1)

The dynamic inertia compensation is essential for real-time dynamic substructure

PAGE 184



6.4. EXPERIMENTAL SET-UP

testing. The lag damper is fitted either end with aircraft grade universal joints.

These allow deviation in all directions while being manufactured under extremely

high tolerances such that axial motion is eliminated. The relief valves are orientated

towards the air flow generated by an electric fan, which produces an air flow of

nominally 15m/s (replicating the environment in which the damper would operate in

practice), in order to achieve the greatest amount of cooling. The damper is a closed

system and as such expels any energy generated as heat. The damper is designed

to operate at between ambient and 50°C in normal flight conditions, increasing to

80aC in desert conditions. The oil seals fail at 120°C. To keep the viscosity constant

within the damper during operation (Le. during changes in temperature) an internal

mechanical spring-loaded compensator is integral to the damper's design. In order

to observe the temperature change during testing a K-series thermocouple has been

attached to the outer casing of the damper and is read on a digital multimeter -

this is not used for any control, just to ensure the correct testing environment.

The base end of the lag damper is then bolted into a yoke directly attached to the

remaining steel support. Finally, a 5 inch steel channel section is bolted directly

onto the steel supports under tension. This preloads the rig which helps to remove

any vibration and unwanted axial displacement. Under test conditions the unwanted

axial displacement was measured at ±O.lmm over the entire length of the rig setup.

Final fine scale alignment for the entire rig was carried out using a theodolite and a

laser projection system.

The control of the test rig is achieved in a similar manner to that described in § 2.3.3,

but again upgraded to achieve the desired performance requirements. The control

station is shown in Figure 6.6 and consists of four constituent components:

Instron 8800 Control Hardware Two Instron 8800Tower Controllers are present

in the setup allowing for a fully integrated eight-channel control for any general

purpose multi-axis hydraulic test application. However, for this experiment we

only require one channel for the single actuator. These hardware controllers
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Figure 6.6: Experimental test rig controller station; 4 components: 8 channel

Instron 8800 hardware control system, dSpace 1103 DSP processor and expansion

board, Inner-loop control computer and Outer-loop/substructuring algorithm

computer.

are state of the art digital servohydraulic controllers which have 19 bit data

resolution across the entire span of each transducer in order to provide the max-

imum data quality. Additionally, the controller offers automatic identification

and calibration of all compatible transducers for accuracy and reliability.

Inner-loop controller Rather than use the Instron 8800 controllers as an ana-

logue amplifier (in a similar way to how the Panasonic AC servo motors were

configured for the case study experiments) a standalone PC is used for the

inner-loop linear PID control of the transfer system. The primary reason for

this is safety, due to the increased safety risk should anything go wrong. While

all the inner-loop control could be handled by the dSpace architecture (as is

done for the case studies) external safety limits for each transducer and for
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the hydraulic system can be directly set and monitored by this PC as it is

integrated with the Instron control towers through dedicated software.

Outer-loop controller A second standalone PC is used for the substructuring

algorithm and outer-loop control. As before, the substructuring algorithm is

designed in MATLAB/Simulink (obtaining the benefits of working on a general

purpose machine) before being compiled and then built into the hard real-

time processor of the dSpace DSP. Additionally, online visualization and data

acquisition is controlled through this PC using the dSpace companion software

ControlDesk. From here we can control the parameters of the substructuring

algorithm such that a variety of testing applications can be performed.

dSpace DSP The dSpace DSll03 R&D Controller Board is used to implement

the substructuring algorithm experimentally in real-time. The substructuring

algorithm is built into the processor (which operates at a clock speed of 500

MHz) and is connected to the Instron controller via an expansion board. The

relevant signals are then passed between the Instron controller and the dSpace

DSP under hard real-time constraints. The dSpace board outputs to the outer-

loop PC in soft real-time for visualization.

Essentially, the inner-loop controller and Instron control tower are used to activate

the system, achieve a high quality, repeatable response from the actuator (such

that the transfer system has low uncertainty) and then to monitor the experimental

signals during operation to ensure that everything is operating within the correct

physical tolerances. The tests are then completely controlled from the outer-loop

controller PC which simply changes the parameters values within the dSpace model,

which in turn provides the demand signal to the activated inner-loop system.
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6.4.1 Lag damper system identification

It is important to carry out a full system identification of the damper in order

to understand why real-time dynamic substructuring of this component can be of

such value. Table 6.1 shows the dynamic testing points set for the EH101 damper as

prescribed by Westland Helicopters Ltd. All excitation is sinusoidal at a frequency of

3.5Hz (that of the rotor system in flight). The requirements state that the amplitude

of the measured signal should not exceed ±5% of the nominal value. For this reason,

the amplitude correction 0' of the AFP algorithm was used in isolation for these tests,

. see § 4.3.6.

Figures 6.7 and 6.8 show the corresponding experimental force-velocity profiles

produced by the damper for the differing set speed conditions as described in

Test No. Set Speed (mm/s) Corresponding

half-stroke (mm)

1 5 ± 0.23

2 8 ± 0.36

3 10 ± 0.45

4 14 ± 0.64

5 18 ± 0.82

6 21 ± 0.95

7 25 ± 1.14

8 130 ± 5.91

9 200 ± 9.09

10 300 ± 13.64

11 450 ± 20.46

12 600 ± 27.28

Table 6.1: Dynamic testing points set for the EH101 damper as prescribed by

Westland Helicopters Ltd.
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Figure 6.7: Table 6.1 (1-8): Experimental Force-Velocity Profile.
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Set Speed: 200mmls (corresponding half-stroke: +/- 9.09mm) Set Speed: 300mmls (corresponding half-stroke: +/- 13.64mm)
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Figure 6.8: Table 6.1 (9 - 11): Experimental Force-Velocity Profile. Maximum

velocity of actuator is rated at 500mm/s; therefore, Test No.12 cannot be performed.

Table 6.1 for 5 seconds worth of steady state data (orientation of profile is anti-

clockwise). Note that the experimental velocity signal has been filtered in a post-

process procedure using a 4th order Savitzky-Golay (S-G) smoothing filter with a

vector size of 21. S-G filters are optimal in the sense that they minimize the least-

squares error in fitting a polynomial to frames of noisy data without introducing a

phase shift to the signal. The S-G filter is not suitable for online use as it requires

data in front and behind the current time step.

The experimental data is superimposed over the manufacture's upper and lower

tolerances. It should be noted that the entire profile is not designed to fit within

these tolerances, instead just the peak position. This highlights one of the major

limitations in the understanding of the damper's dynamic characteristics as when

designing the damper, it is just these tolerances which are specified.

The most obvious experimental characteristic of an actual lag damper compared
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to that of the idealized profile of Figure 6.4 is its hysteretic behaviour after the

piston changes direction. The extent of this is controlled by the size of the orifice

in the piston and the viscosity/compressibility of the oil, all of which are fixed

after manufacture/assembly for this type of passive damper. A further significant

nonlinearity is seen as soon as the relief valve opens, this is most clear in Tests

8-11. The oscillation that is observed is the relief valve spring "bouncing". This

is small in Figure 6.7(h) as the valve only opens for a short time as the damper

piston is almost at the end of its cycle such that the acceleration is low. However,

compared to Figure 6.8(c), when the valve opens while the damper is being driven

at a far higher acceleration, we now observe sizeable nonlinear oscillations. The

shape and magnitude of this nonlinearity is repeatable for each set condition, as 5

seconds of data is shown for each test, but is different for each test. Therefore, when

the damper is not being driven in this simple manner, such as in-flight, it becomes

increasingly complicated to model these dynamics. The combination of these two

nonlinearities, and the fact that they vary with the operational environment of the

damper, have made numerical modelling of such dampers extremely difficult.

It is noted that the slight nonlinearity at zero force is the actuator dead zone (a

certain pressure is required to overcome the static friction of the piston). However,

this nonlinearity is markedly better than the servo mechanical actuators of the case

studies can achieve.

6.5 Scope of the current work

As previously stated, until recently only linearized or simplified computer simu-

lations of a helicopter lag damper dynamics have been used. Eyres [2] extended

this work by developing a full parametric model of the damper excited by recorded

fight data in order to try and capture its nonlinear behaviour, as discussed in the

previous section. While this provides a far more accurate understanding of the

damper's performance it is still only a numerical simulation with only a limited
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ability to validate its accuracy.

PsD substructuring has achieved a high level of success in the field of earthquake

engineering. Real-time dynamic substructuring, on the other hand, is still very new

in terms of any commercial applications. Here, we present work which was carried

out in collaboration with Westland Helicopters Ltd. as a feasibility study to show

how the testing technique can be applied to such a complicated mechanical problem.

Westland Helicopters Ltd. believe that this could be the basis for future design of a

more efficient lag damper. This application represents a broadening of the real-time

substructuring technique from the large civil structural engineering applications to

also being viewed as a valid smaller scale component testing technique.

In this chapter we build on the work of Eyres [2] to create a real-time dynamic

substructuring algorithm of a numerical model of a single blade being excited by

steady-state flight data connected to a flight certified lag damper. This is not a

part step to demonstrating the effectiveness of substructuring as a dynamic testing

technique, but a complete validation of the experimental techniques and strategies

presented in this thesis. The future direction of the research (see § 7.2) will lie

in creating more involved numerical models of a coupled five bladed rotor system

under changing flight conditions or in developing smart damping devices. However,

essentially the same tests would be being performed as will be described for this

pilot study.

6.6 A simplified model of a blade in rotation

The original rotor code (called R150 and supplied by Westland Helicopters Ltd.)

models the motion of a single blade under one full revolution. The code iterates

until the blade's motion becomes periodic at which point the helicopter is said to

be in a trim condition. Physically this would occur when the helicopter is flying at

a constant velocity, altitude and direction or constant manoeuvre for a sufficiently

long period of time to remove transients. Additional features are included in the
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model, such as trailing edge vortices, but the general characteristics are described

by a modal model. The full code is based on work developed by NASA in the 1950's

and 60's [114, 115].

A simplified version of the model is outlined in this section and was first presented in

Eyres [2]. This derivation assumes the blades are forced periodically by a constant

matrix, modified to take into account the new force from the experimental lag

damper. The analysis uses 8 modes represented by cPi where i= 1 ... 8. The modes

correspond to 4 flap modes, 3 lag modes and one twist mode. A disadvantage of using

a modal approach is that the lag damper model cannot be directly incorporated into

the equations [116]. Instead, the forcing effect of the damper is included on the right

hand side of the forced response equation, thus giving the equation of motion for a

given mode to be

_.!_ d2cPi + 2uP>.f dcPi + (>.B)2A,_ = _.!_{MF.Code _ uiurr« + LDMF.exP)
02 dt2 0 dt t 'Pt liB t tt'

(6.2)

with modal frequency >.f, modal inertia If and structural damping up of the blade

for an angular velocity of O. The set of equations are forced by the constant matrices

M ~code, the total modal forcing from the main rotor code and the lag damper modal

forcing, LD M ~code . These three modal forcing matrices are periodic functions

of time (or azimuth). The damper forcing is removed from the total forcing and

replaced by the modal forcing measure from the physical substructure, LD MFiexp,

calculated in Eq. (6.21) which is now a function of the modes. This effective total

modal forcing drives the set of differential equations in Eq. (6.2). The motion of the

damper is defined by the coordinates in Figure 6.9.

The motion of the blade in the flap, lag and torsion planes combine to produce a

motion of the blade relative to its fixed rotating position. The flapping and lagging

angle of the blade is given as {3B and (B respectively. The flap and lag angles are

calculated by constant vectors wE (the modal flap deflection) and 'DE (the modal

lag deflection) multiplied by the current modal state cP such that
8

{3B = wtD +L cPiWfn, (6.3)
i=1
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8

(B = V~D +L ¢iVf;,
i=l

(6.4)

where, W~D and V~D are the initial values. The angle of twist, OB, is simply a

sinusoidal function of the modal state

B B dO~ BB.o = 00 + d7jJ - Al cos{7jJ)- Bl sm{7jJ), (6.5)

where, Af and Bf are the lateral and longitudinal cyclic control angle constants

respectively, O~ is the initial angle and 7jJis the azimuth angle. The angular velocities

of the three motions can then be found as

(6.6)

(6.7)

dOB

d7jJ = Afsin{7jJ) - Bfcos{7jJ). (6.8)

Using Figure 6.9 the rotation matrices can be derived as follows. The global position

at Band D is given by the vectors l! and 4 respectively. The position and velocity

of D in the global coordinates can then be expressed in terms of the blades relative

motions in flap, lag and twist as

(6.9)

A

D

B c

o

Figure 6.9: Geometry of how lag damper is attached to the blade: "0" represents

the centre of the hub, B represents the flap hinge and C represents the lag hinge.
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(6.10)

where the rotation matrices for flap T{3, lag Tt; and twist T9 are given as

COS(f3B) 0 -sin(f3B)

T{3= 0 1 0

sin(f3B) 0 cos(f3B)

cos((B) -sin((B) 0

Tt; = sin((B) cos((B) 0

0 0 1

0 0 1

T9 = 0 cos(OB) -sin(OB)

0 sin(OB) COS(OB)

(6.11)

(6.12)

(6.13)

The velocities at D are transformed into the damper axis to give the velocity of the

damper piston, Vd, using the fixed position g at E. Subscripts indicate the component

of the vector that is being used. For example gz is the component of the position

vector at E in the direction of the z-axis.

where
COS(,B) -sin(,B) 0

T; = sin(,B) cos(,B) 0

0 0 1

cos( 6'B) 0 -sin(6'B)

o 1 o

(6.14)

(6.15)

(6.16)

for the angles ,B and 6B representing the angles of the damper relative to the points

D and the fixed point E on the hub. The angles are calculated as
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(6.18)

where LD is the absolute distance between the two attachment points of the lag

damper expressed as

(6.19)

The resulting velocity, Vd, used in the damper equations is the output from the

substructuring numerical model.

The force measured from the damper, F = [A~P, 0, 0] (where, A is the cross-

sectional area of the piston and ~P is the pressure difference between chambers 1

and 2), is transformed back into the global axis system at D to give FD so the

modified forcing of the modes can be calculated as

(6.20)

and at C using the fact that Fe = FD:= [FCx, FCy, FCz].

The modal forcing provided by the damper is given for the ith mode as

7
LD M pexp = _!_ ~ T.(j)

t fPL- t ,

j=l

(6.21)

where the seven quantities 1iU) are calculated for each mode using small angle

approximations and constant vectors WiD' ViD and tiD for flap, lag and torsion such

that

T.(l) - FCx( _(}B(g- !!.)y - (g - !!.)z - (g - !!')x{3B)WiD't

T(2) - FCx((}B(g - !!.)z - (g - !!.)y - (g - !!.h(B)ViD't

T.(3) - FCx( -(3B(4 -1l)y(B(4 -1l)z)tiD,t

T.(4) - FCyviD' (6.22)
t

y,(5) - -FCy(4 - !!.)ZtiD't

T(6) - FCzwiD't

r.(7) - FCz(4 -1l)ytiD't
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6.7 Numerical substructuring simulation of the idealized lag

damper

The first stage of creating a substructuring algorithm is to convert the derivation,

described in the previous section, into a format that can be compiled into the real-

time processor of the dSpace DSP. Due to the complexity of the model required and

the need for the code to run as efficiently as possible, the substructuring numerical

model has been built into a real-time S-Function, as described in § 2.4.3. Refer

to Appendix B for the actual S-Function code. Additionally, if we also develop a

separate numerical model for the idealized substructure (the viscous damper shown

in Figure 6.4) we can run a purely numerical substructuring test, effectively setting

r = 0 from § 5.3.3. As this model of the substructure will only be used for

development purposes and for the robustness compensation (see § 6.9.1) an accurate

model of the damper is not required, just one which has similar characteristics.

Although for the full experimental substructuring algorithm it will not be possible

to model an emulated system, it is, in a sense, possible for our numerical-numerical

substructuring algorithm. If we can have confidence in the numerical algorithm, it

(a) Time domain response

-5

-10 -10

5

-5

-15L-------~--------~--------~--------~ -15L---~--~--~--~
3 3.5 4 4.5 5 -400 -200 0 200 400

Time (s) Velocity (mm/s)

Figure 6.10: A comparison of the idealized Eyres [2] damper model [F* v*] excited

by flight data to a continuous-time numerical-numerical substructuring algorithm

test [F v] excited under the same conditions.
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will allow us to draw the same conclusions about accuracy of the final experimental

results as discussed in § 4.3.7. Using the same idealized lag damper model for

both the numerical substructuring algorithm and the model designed by Eyres

[2] and then exciting them both under the same flight conditions and from the

same flight data we can compare their results. Figure 6.10 shows such a test for a

flight speed of 84knots. We see an extremely high correlation in the time domain

responses, Figure 6.10 (a), between the emulated system (the Eyres [2] model) and

a continuous-time numerical-numerical substructuring algorithm. From Figure 6.10

(b) we observe identical force-velocity profiles for the modelled damper. We can

take this result as a validation of the numerical substructuring algorithm.

However, the substructuring algorithm must operate in discrete-time when per-

forming an experimental test. The computation duration can be identified from the

system state feedback from the dSpace processor. For the 1103 board, the minimum

turnaround time to operate the substructuring algorithm is 0.82ms. If we repeat the

previous test at a discrete sample rate of 1kHz we can see the effect on the results,

as shown by Figure 6.11. It is clear that the discretization of the force signal from

the numerical substructure can excite some of the high frequency modes when the

(a) Time domain response
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substructuring algorithm (t:J.t = 1ms).

Figure 6.11: Repeat of test form Figure 6.10 with a discrete-time numerical
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~
modelled relief valves open and close. It is important not to misinterpret this as

an inaccuracy of how the substructuring algorithm has been setup, but instead to

recognize that this is a limitation of the numerical modelling of the substructure.

The output from the numerical model of the blade is a velocity that is fed directly

into the numerical superstructure, which in turn outputs the relevant force purely on

an explicit algorithm. This allows the force to dramatically change (unrealistically)

around the critical region of the relief valve motion, as discussed in Eyres et al. [117J.

When performing experimental substructuring however, the physical substructure is

continuous (one of the main reasons for the developments of the technique) and thus

will give a response similar to that of the continuous-time numerical substructuring

algorithm, except containing the real, nonlinear dynamics of the damper.

6.8 Stability of the substructuring algorithm

Figure 6.12 shows a simplified schematic representation of the blade and lag damper

emulated system decoupled for each mode i = 1, ... ,8. The nonlinear damper

a4i and the nonlinear spring aSi are taken to be the substructure. For the real

damper the level of damping (a4) is dependent on the nonlinear hysteretic behaviour

observed in the lag damper system identification of § 6.4.1. The nonlinear spring

(as) represents the compressibility of the fluid inside the damper chambers. This

Figure 6.12: Schematic representation of the blade and lag damper system for each

mode i = 1, ... ,8.

PAGE 199



CHAPTER 6. AN INDUSTRIAL EXAMPLE OF SUBSTRUCTURING

is a complex problem as the faster the lag damper's piston is moved the higher the

effects of compressibility and the more the damper starts to behave like a spring

rather than solely providing inertial damping. We can rewrite Eq. (6.2) in this

simplified structure for the substructured system (analogous to the single-DOF case

study Eq. (3.4)), such that

(6.23)

where, ali, ...,6i are predetermined coefficients (calculated from the parameters defined

in Eq. (6.2)) for each mode i = 1, ... ,8 (this data is commercially sensitive and

therefore cannot be published), and again the state of the transfer system Xi is

described by a unit delayed response of the numerical model (Pi, such that Xi -

¢>i(t - T). Solving this DDE will create eight separate critical limits, Tcl, ...,8'

It is beyond the scope of this pilot study to perform a stability analysis on the real

lag damper substructured system due to the highly nonlinear characteristics of the

damper and the fact that the modes are decoupled in this way. Investigative work

needs to be undertaken to see if passing one critical limit causes local or global

instability of the substructuring algorithm, see future work § 7.2. However, as there

is only one transfer system in this case, the smallest value determines the absolute

stability of the overall substructuring algorithm.

To achieve this we perform an approximate stability analysis using the idealized vis-

cous damper. Thus, compressibility will be ignored, a5 = O. The damping coefficient

of the idealized viscous damper can be calculated by simplifying the damper charac-

teristics to being approximately linear (rather than nonlinear) piecewise smooth and

reading off the resultant gradients. This will produce two coefficients - Cl for when

the blow-off valves are both closed and C2 for when one is open. As we have seen in

Chapter 3, the critical limit of stability is based on a ratio between the damping and

the stiffness of the substructure system. Cl represents the case where the idealized

damper has both high damping and high stiffness, whereas C2 is the case for low

damping and low stiffness. We therefore must consider both situations to see which
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is the dominant case in terms of stability. We can rewrite Eq. (6.23) to give

(6.24)

for the unexcited system, as in the DDE analyses performed in Chapter 3.

We can now study the substructured system of Eq. (6.24) in order to determine

the sixteen (eight for each damping case) critical delays Tci above which the system

is unstable. As Eq. (6.24) is second-order DDE (as for the multi-DOF case study,

§ 3.2.5) we use DDE-BIFTOOL ([91]) to find real part of the characteristic root

and therefore the absolute critical delay Tea (the smallest critical value and thus the

delay magnitude which determines the absolute stability).

Figure 6.13 shows the real part of the characteristic roots for Eq. (6.24) for the

damping case of Cl where both blow-off valves closed. The dominant mode (the

first root to cross the zero axis) is highlighted in bold and in fact represents the 7th

mode which models the third lag mode. The smallest critical value is shown in the

enlarged view in Figure 6.13(b) and has a value of Te7 = O.75ms. The smallest critical

value for the damping case of C2 is calculated to be TcB = 6.34ms and represents the

(a) Real part of characteristic roots
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Figure 6.13: Real part of the characteristic roots for Eq. (6.24) for the damping

case of Cl (both blow-off valves closed).
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8th mode which models twist. Thus, the case where the blow-off valves are closed is

shown to be the dominant factor in terms of stability, and sets the absolute critical

value to be Tea = 0.75ms.

However, we know this to be an approximation as the compressibility of the fluid has

been ignored and only the simplified linearized system has been considered. Despite

this, it does provide an initial guide to work from when performing an experimental

test. It demonstrates the very high level of performance which is required due to the

very small stability margin and thus why robustness is an essential consideration

in terms of achieving a successful real-time dynamic substructuring test for an

industrial application.

6.9 Experimental real-time substructure testing of a real

lag damper

We take the general case of steady state flight at 84knots, as was used for the

numerical substructuring algorithm of § 6.7. We use this criterion, along with

a number of specific helicopter properties to find the constants for Eq. (6.2) -

these then set our steady state flight conditions (the details of this information is

industrially sensitive and therefore cannot be published). In order to gain the best

chance of achieving a successful real-time dynamic substructure test we now apply

the robust transfer system design of § 5.2.

6.9.1 Robust transfer system design

Step 1: Proprietary control. Rather than perform an open-loop system iden-

tification, as carried out in § 2.3.4, the Instron 8800 control hardware contains

a self-tuning algorithm. This was performed for a PID controller and then fine

tuned to give a damping of ~ 0.8; the controller gains are shown in Table 6.2.
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I Gain II Value (dB)

P 32.0

I 1.2

!) 0.8

Table 6.2: Fine tuned PI!) gains for EH101 test rig.

Step 2: Transfer system identification. The resultant characteristic performance

of the actuator is good and highly repeatable with only lownonlinearity; there

is still a dead zone which must be overcome during change of direction due

to the static friction of the piston. However, it is noticeably better than the

servo mechanical actuators used for the case study experiments.

A closed-loop transfer system identification was then carried out under a sine

sweep excitation (from 0-lOHz in 60s at ±5mm) to produce the resultant

nominal and uncertainty models.

Step 3: Nominal model. As in § 5.2 we use the MATLAB Output Error (oe)

function to approximate the "best" fit of experimental response x compared

to the sine sweep demand r. A 1st order fit is shown to capture all the nominal

characteristics and is given by

x(t) _ 166.5
r(t) - s + 169.3' (6.25)

As Eq. (6.25) is a simple pt order model it is straightforward to use as the

gross feed-forward cancellation controller according to Eq. (5.3) described in

§ 5.2. The displacement and velocity states directly output from the numerical

model of the bade can be explicitly used so the problem of having an improper

transfer function is removed.

We can now observe the potential accuracy of this cancellation controller (i.e.:

the ability of the nominal model to faithfully capture the dynamic behaviour

of the transfer system) by repeating the numerical substructuring test of

Figure 6.10 with the physical substructure running in parallel - this is in
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Figure 6.14: Accuracy of the nominal model cancellation controller for a

substructuring test at a flight speed of 84knots (repeat of Figure 6.10); Numerical

substructuring response: z, Experimental transfer system response: .7:.

fact an experimental real-time dynamic substructuring test with robustness

compensation of r = 0 (§ 5.3.3). Figure 6.14 shows the accuracy of the nominal

model cancellation by comparing the desired numerical model displacement,

z, of the numerical algorithm to the actual transfer system displacement, x,

as an outer-loop controller.

Instead of using the nominal model the AFP algorithm could also be used to

achieve the required level of delay compensation. However, the complexity of

the substructured system is high due to the large discontinuity in the damping

characteristics (at the instant a relief valve opens) resulting in subsequent

discontinuities in the numerical model displacement, z, which would be difficult

to compensate for using polynomial extrapolation - the AFP algorithm is

strictly designed to achieve compensation of smooth signals. As the nominal

model is so good in this case it will be used instead of the AFP algorithm as

it is inherently more stable to non-smooth signals.

Step 4: Uncertainty model. We cannot compute an explicit model for the un-

modelled dynamics as they are expressly nonlinear, but instead must be aware

of when they are significant and how best to achieve a successful test. The
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formalization of the stability criterion in § 6.8 (although approximated) and the

good nominal model of the transfer system dynamics reduces the uncertainty

in the substructuring algorithm substantially.

As discussed inChapter 2, substructuring started in the field of large structural

testing, specifically structures under the influence of an earthquake. In this

situation, all transient behaviour of the structure is of vital importance for a

good understanding of the full dynamic response. Therefore, the substructur-

ing algorithm must utilise the experimental force for the entire duration of the

test, a robust technique for achieving this is discussed in § 5.5. However, in

the case of the EH101 lag damper, it is only the steady state dynamics that

we are interested in and therefore it is unnecessary, and in fact meaningless,

to start the test using the experimental force. This is due to that fact that

it is assumed that the blade is forced periodically by a constant matrix in

a constant state of trim condition. The entire test would only have to be

operated using the experimental force if the numerical model of the blade was

excited by flight data that started from rotor start up to helicopter take off

before reaching steady state flight - this is beyond the scope of this pilot

study, see § 7.2.

Thus, the most appropriate robustness compensation scheme to use is the

,-compensator as this has already been show in Step 3 to produce a stable

substructuring algorithm (although, was set to zero). Therefore, the exper-

imental test can be started and run with, = 0 while there is any transient

behaviour and while the cancellation controller achieves steady-state synchro-

nization. Then, using a linear progression of, = 0 --+ 1 in 5s (such that no high

frequency modes are excited and any induced erroneous dynamics are removed)

can be performed to achieve a fully experimental real-time substructuring test.

Should the margin to instability not be sufficient then, can be stopped before

it reaches one such that only part of the experimental force is utilized.
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The framework of robust transfer system design is flexible and allows the most

appropriate algorithms to be selected and used in accordance to their need for a

specific application. It is envisaged that the robustness compensation (Step 4) is

only used when it is required as an inherent drawback is that robustness is always

achieved in compromise of the dynamical accuracy of the numerical model.

6.9.2 Steady-state flight

We perform a real-time experimental substructuring test for the same excitation

conditions as for the numerical substructuring test of Figure 6.10. The robust

transfer system design is applied as stated in § 6.9.1 such that the test is commenced

with I = 0 to ensure stability. Typical experimental results are shown in Figure 6.15

for one continuous test. Figure 6.15(a1) shows the test between 6.6-7.6s for I = 0
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Figure 6.15: An experimental substructuring test at a flight speed of 84knots.
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but after all transient behaviour has died away and the cancellation controller has

achieved full delay compensation as can be seen from the synchronization subspace

plot of Figure 6.15(a2). The robustness compensation is then removed over a 5s

period to give Figure 6.15(b1) which shows the test between 15.6-16.6s for the

situation of I = 1 - this is now real-time dynamic substructuring test using

100% of the experimental force. The algorithm is stable due to the high level of

synchronization which is still achieved by the nominal model inversion as can be

seen in Figure 6.15(b2).

It can be seen that the characteristic shape of the steady-state numerical model

displacement is different for the numerical case (r = 0) to the experimental case

(I = 1) as expected. This is because the force signal fed back form the substructure

is now representative of the true dynamics of the real lag damper (as shown in the

lag damper system identification in § 6.4.1) rather than the dynamics of the idealized

viscous damper (Figure 6.4). This can clearly be seen in Figure 6.16 showing the test

at the same 15.6-16.6s interval when I = 1. The numerical force signal is shown in

black whereas the actual force signal being fed back from the substructure is shown

in red as can be seen from Figure 6.16(b). The numerical force is being calculated

(a) Time domain substructure response
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Figure 6.16: Force feedback during substructuring test from Figure 6.15.
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in parallel to the experimental force being measured and shows how the idealized

lag damper would behave at any given moment in time - in this case we know this

is not actually representative of the true system.

As the system is so complex we have actually no way of calculating the emulated

system. Therefore, we use the method presented in § 4.3.7 of observing the local

control error, e2, in conjunction with the capacity utilization of the actuator. The

local error is clearly very small as can be seen from Figure 6.15(b2). Figure 6.17

shows the capacity utilization of the actuator against an estimated performance en-

velope for the actuator (based on a generic hydraulic actuator) for 5s of experimental

data. It can be seen that the majority of the test is performed well below 50% of the

actuator's capacity along with the whole profile being located well within the linear

region. Thus, we can have high confidence that the global error for the experimental

substructuring test is small and therefore this is demonstrative of the lag damper's

true dynamic characteristic in situ during flight.

It is clear from Figure 6.16(a) how the characteristic hysteretic behaviour of the real

damper manifests itself in altering the idealized response. Therefore, the red line

5Or--~

40

20

100 500 600200 300
Velocity (mm/s)

400

Figure 6.17: Estimated actuator capacity envelope for the actuator. Experimental

data shown for the test of Figure 6.16 (5s test data).
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(the experimental force signal) can provide us with a far greater understanding

of the vibrational characteristics of the energy being transmitted back into the

helicopter fuselage than the idealized model. This is because it contains the same

modal frequency content as would be found from the same lag damper on an actual

helicopter in steady-state flight at 84knots. This information can then be used

to alter the characteristic dynamics of the lag damper by changing the tunable

parameters (such as orifice size, bypass diameter, viscosity, relief valve arrangement

and critical values etc.) to reduce in vibration transfer at the dominant modes of

n ± 1 the number of blades - however, this is beyond the scope of this work, see

§ 7.2.

6.9.3 Substructuring instability

As witnessed for the small scale case studies in Chapter 4, when the level of delay

compensation is reduced such that the magnitude of the response delay T is greater

than the critical delay Tc, instability is observed characterized by the onset of

oscillation with positive exponential growth. However, in this case the absolute

E
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-10L-------~~------~--------~--------L-------~~------~--~
7.4 7.6 7.8 8.0

Time (s)
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Figure 6.18: Progression to instability as the magnitude of delay compensation is

reduced (after approximately 8.6s the failsafe system kicks into action and stops the

test automatically).
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critical limit, Tea (calculated in § 6.8) is only estimated. Figure 6.18 shows the case

when the cancellation due to the nominal model is reduced. By increasing the value

of the numerator and denominator (keeping the ratio the same to maintain the level

of steady-state amplitude correction) the level of delay compensation is decreased

until instability is observed at an approximate value of:

G' (S)-1 = S+ 245
n 241 '

where G~(s) is a reduced accuracy nominal model. At the dominant excitation

(6.26)

frequency of 3.5Hz this corresponds to 1.8ms difference in the magnitude of delay

compensation gained from using the original nominal model Gn(s) of Eq. (6.25).

Therefore, as we know the original nominal model provides a very high level of

synchronization this gives an approximate experimental critical limit of Tc ~ 1.8mm

rather than the approximated value of Tea = O.75ms. The reason for the increased

margin of stability can be understood for two reasons. Firstly, the higher order terms

of the nonlinear piecewise smooth function are discarded in the linear approximation

and secondly, by referring to the experimental force-velocity profile of Figure 6.16(b).

During the period when both blow-off' valves are closed, the characteristic profile only

attains the steepest gradient (as used by the linearized approximation for cd for a

very short period of time before the corresponding blow-off' valve opens. As discussed

in Chapter 3, instability is not catastrophic, the substructuring algorithm must stay

100
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Figure 6.19: Spectrum of instability frequencies from Figure 6.18.
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in the unstable region for cumulative time steps for the oscillations to build up (the

rate is determined by the magnitude of the real part of the characteristic root at the

given delay). It is therefore possible that the substructuring algorithm does pass into

the unstable region before T = 1.8mm but does not lead to a catastrophic failure, as

can be seen from the small oscillations building on the first rising peak. Figure 6.19

shows the frequency content of a stable substructuring algorithm compared to that

of the unstable test of Figure 6.18. As there are now eight modelled modes in

the numerical model along with the nonlinear characteristics of the damper fluid,

instability is now observed over a whole range of frequencies.

6.9.4 A comparison of two different lag dampers

It is clear that the lag damper has a significant influence on the blade dynamics

and thus the vibrational energy transferred back into the fuselage. Therefore, as the

EH101 is a five bladed helicopter all the lag dampers must be balanced such that

no erroneous dynamics are created in the hub.

Figure 6.20 shows a repeat of the test shown in Figure 6.15 for the constant flight

speed of 84knots but for two individual lag dampers. Although the EH101 lag

dampers are manufactured to strict tolerances they are only specified by the max-

ima/minima values of the testing points set shown in the system identification of the

lag damper in § 6.4.1. No information is given about its specific dynamic profile.

Figure 6.15 shows that although the dynamic characteristics of the two dampers

are similar, their exact behaviour is not, even though they are excited by the same

flight data under the same testing conditions. Here, this is due to the fact that the

second damper is no longer flight certified, but this comparative test does show how

a set of lag dampers could be balanced for an individual hub system and thus reduce

vibration transfer to the rest of the helicopter.
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Figure 6.20: A companson of two different lag dampers for an experimental

substructuring test (a repeat of the test from Figure 6.15).

6.10 Conclusion

Helicopters vibrate. An unadjusted helicopter can easily vibrate so much that

structural damage can be caused or create an operational environment for the pilot

that can only be sustained for short periods of time. To reduce vibration, all fully

articulated helicopters have a combination of three hinges. Because the advancing

blade has higher airspeed than the retreating blade, a perfectly rigid blade would

generate more lift on that side and tip the aircraft over. In consequence, rotor blades

are designed to "flap" - l~ft and twist in such a way that the advancing blade flaps

up and develops a smaller angle of attack, thus producing less lift than a rigid

blade would. Conversely, the retreating blade flaps down, develops a higher angle

of attack, and generates more lift. At high speeds, the force on the rotors is such

that they flap excessively and the retreating blade can reach too high an angle and

stall unless properly damped. The lag damper is the most efficient current means
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for controlling this motion, however, its inclusion in this dynamic system introduces

its own problems.

We have shown here how real-time dynamic substructuring can be used to better

understand the effect of the lag damper on the entire system rather than observing

its dynamic characteristics in isolation, as in the end, the actual force-velocity

characteristic of an individual lag damper is immaterial, the important criterion

is its dynamic effect on the entire helicopter.

The robust transfer system design has been used here to good effect in order to

achieve a range of successful experimental tests (§ 6.9.1). The stability of the

substructured system was studied in § 6.8, and although approximated gave a

good working indication for the performance criteria of the delay compensation

scheme. In this case we apply an inverse of the nominal model (for Step 3) to act

as a gross feed-forward cancellation device rather than the adaptive AFP algorithm

presented in Chapter 4. This was done for two reasons; first, the excitation is

constant and periodic such that the need to adapt to changing plant dynamics

during experimentation is not required, and secondly, the large discontinuity in

the force characteristic (due to the piecewise smooth nature of the lag damper)

introduces corresponding discontinuities in the numerical model displacement, the

demand signal for the transfer system. As stated earlier, the AFP .algorithm is

strictly designed to achieve compensation of smooth signals and thus achieving

accurate compensation of this particular numerical model signal using polynomial

extrapolation is difficult. However, as the framework ofrobust transfer system design

is flexible this allows the most appropriate algorithms to be selected and used in

accordance to their need as shown by the -y-compenaator only being used at the

start of the test (Step 4). Once steady state conditions were achieved all robustness

compensation was removed resulting in the complete experimental dynamics from

the substructure to be fed back into the substructuring algorithm.

These results show a validation for this testing technique for smaller scale mechanical
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component testing and thus a broadening of the original concept of application of

large scale structural seismic testing.
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Chapter 7

Conclusions and recommendations

SUMMARY: This chapter provides a summary of the work detailed

throughout this thesis. We highlight the main advances made by the

work and make recommendations for potential future directions.

7.1 Discussion

The basis of the work presented in this thesis is on understanding the fundamen-

tal principles behind the experimental side of the hybrid numerical-experimental

testing technique known as real-time dynamic substructuring. The complexity of

the substructuring technique arises due to "gluing" the numerical and experimental

parts of the virtual testing environment together. The influence of the numerical

model(s) must be applied to experimental specimen(s) through physical device(s),

usually an actuator, but as with any piece of equipment the transfer system (as it

is known) has its own dynamics which must be included within the substructured

system. The typical consequence is the introduction of delay errors into the cal-

culation of the numerical model(s). Due to the bi-directional coupling between the

experimental and numerical side of the virtual environment this error leads first to a

loss of dynamical accuracy of the substructured system (compared to the complete

structure) before instability is observed, characterized by the onset of oscillations

PAGE 215



CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS

with exponential growth. This marks a failed test and can result in catastrophic

damage being sustained by the substructure.

At the time the research for this thesis was started, real-time dynamic substructuring

had just moved beyond the "proof of concept" stage. Now, the field is maturing into

a viable testing platform. The main contribution of this thesis has been to develop

techniques in order to overcome the phenomena of delay induced instability and

apply them to a mechanical and aerospace industrial application. The following is

a summary of the main areas that are covered in this thesis and the advances that

have been achieved:

Formalising a generic substructuring algorithm

This is discussed in detail in Chapter 2 and demonstrated by Wallace et al. [69]; work

in this area has also been published in [70, 118, 119]. The generic substructuring

control algorithm was split up into two separate feedback loops. The inner-loop

which contains the actuator and its proprietary (linear) controller in order to form

the transfer system (whose primary purpose is to achieve a suitable "linear" response

such that the effects of uncertainty and nonlinearity are reduced to an acceptable

level) and the outer-loop which controls the level of delay compensation and mag-

nitude of the robustness compensator. The outer-loop can either be a fixed feed-

forward process or an adaptive feed-back algorithm using the same synchronisation

error, e2, as the inner-loop control. This error is also the only measurable quantity

of accuracy when the substructured system is complex as discussed later. Through

the use of concepts taken from synchronization theory we are able to observe this

error online during the experimental testing which has the advantages of:

• giving the user an initial and instant guide to the accuracy of an individual

test and where the potential sources of errors may lie instead of carrying out

lengthy post processing analysis.
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• allowing linear controllers to be tuned online without the need for system

identification.

• viewing the adaption characteristics of adaptive controllers.

These can be extremely useful in gaining a greater understanding of the experi-

mental characteristics and limitations of the experimental equipment along with

highlighting the major contributing factors that limit the level of synchronisation.

Finally, by treating the feedback force from the substructure (in the outer-loop of

the substructuring algorithm) as an autonomous "disturbance" both the numerical

models and control of the transfer systems become decoupled for a multi-DOF or

multi-transfer system substructured system. In the case of the case study examples,

this allowed the equations of motion of the numerical model to be solved as an ODE,

disregarding the inherent delay in the substructuring algorithm, thus allowing fast

computation essential for real-time control.

As long as the strict constraints of hard real-time control are adhered to, any type

of numerical modelling technique and any type of control algorithm can be utilized.

Thus, there is great flexibility in this generic framework for speciallizing the specific

algorithms to suit the specific substructured system.

A formal stability study on the effect of delay errors

A formal stability analysis of delay induced instability was performed in Chapter 3

and can also be found in Wallace et al. [69] and by Gawthrop et al. [74]; work

in this area has also been published in [120-122]. The transfer system(s) which

act on the substructure are controlled to follow the appropriate output from each

respective numerical model, which is typically a displacement. Thus, delays arise

naturally as it is not possible for any controlled system to react instantaneously

to a change of state as prescribed by the numerical model. In fact, there are a

number of different delays which combine together to give the overall delay of the
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transfer system (including data acquisition, computation, digital signal processing

and the actuator delay itself) which are combined into the overall synchronisation

error, e2' At the same time the force(s) between the transfer system(s) and the

substructure are fed back into the numerical model(s) to give a form ofbi-directional

coupling which is affected accordingly by the same error and thus is the source of

the instability. It is important to note that this form of instability is different to the

numerical instability encountered from an integration algorithm.

We studied the stability of the substructured system in direct relation to the mag-

nitude of this delay error and presented two methods for identifying the critical

limit of stability, the maximum value the delay of the transfer system can reach

before instability was observed, characterized by the onset of exponentially growing

oscillations. The method of modelling the substructured system with delay differen-

tial equations (DDEs) explicitly includes the delay(s) due to the transfer system(s)

[69]. The advantage of DDE modelling is that powerful analytical and numerical

methods can be used to determine the stability of the DDE model and, hence, of

the substructured system. The phase margin approach [74] provides a measure

of how near to instability the ideal system is in terms of how much phase lag is

permissible. The disadvantage of this approach is that the substructured system

must be approximated to a linear transfer function. However, it can be readily

used for the class of systems for which the DDE methods cannot or when it is

impractical to use other techniques, giving it considerable advantages in terms of

practical implementation.

We have shown explicit calculations for the stability limits using both approaches

before demonstrating a numerical approach which has the advantage of being suit-

able for complex and nonlinear systems with more than one delay. This remains a

source of future work as discussed in § 7.2.
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The application of delay compensation to real-time substructuring

Due to the inherent delay introduced into the substructuring algorithm, as shown by

the delay induced instability, delay compensation techniques are required in order

to achieve stability and are discussed in Chapter 4 and by Wallace et al. [75] and

Gawthrop et al. [76]; work in this area has also been published in [120]. These

delay compensation techniques are different in principle to the classical control of a

delayed system as they are inevitably linked to the stability of the overall algorithm

through the magnitude of the delay which remains.

We discussed two different formulations of a compensation scheme to be used as

an outer-loop controller. The first type assumes that the dynamics of the trans-

fer system may be approximated to a pure delay and utilizes forward prediction

methods using polynomial extrapolation to predict forward the numerical model

displacement. This was achieved through calculating the polynomial coefficients

each time step such that non-integer multiples of a time step can be predicted

and also incorporates an amplitude correction algorithm [75]. This method was

extended by vary the amount of delay compensation in an adaptive manner based

on the error between the actuator displacement and the desired numerical model

displacement, e2' This, in effect, relaxes the assumption of a pure delay and

thus can account for variable plant dynamics. The second type was' achieved via

lag compensation [76]. By estimating an experimental transfer function of the

combined inner-loop controller and actuator dynamics the outer-loop controller

can compensate for unwanted dynamics by applying the inverse of the transfer

function estimation. This has the advantage of achieving compensation over the

entire frequency range of operation for the transfer system.

The concept of achieving a robust substructuring algorithm

The work described in Chapter 5 and by Gawthrop et al. [74]extends the outer-loop

control strategy in order to introduce the concept of robustness. Robustness is an
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essential consideration in the formulation of a successful testing strategy as it reduces

the uncertainty of the transfer system response and increases the available margin

to the critical limit of stability. However, this was always achieved in compromise

of the dynamical accuracy of the numerical model. This work led us to develop a

four stage testing methodology that can be applied to any substructured system to

help ensure successful testing.

How accuracy can be assessed for complex substructured systems

The question of accuracy in terms of a substructuring algorithm is complex and

discussed throughout the thesis and by Wallace et al. [75J; work in this area has

also been published in [70, 118]. The problem is complex as there are two coupled

errors, the numerical model error, el, and the local control error, e2, which combine

together as described in Proposition 1 (§ 2.6) such that as the local error is reduced,

the numerical model error is also reduced (z --+ z" if x --+ z); although, the exact

relationship between el and the e2 will be system dependant. These combine to give

the overall accuracy of the substructuring experiment comparing the dynamics of

the virtual substructuring test to that of a test for the complete structure (should

that be possible) and is called the global error.

However, it is the typical situation in substructuring that the emulated dynamics

are not known and is in fact why the substructuring tests are being performed.

Therefore, the numerical model error, el, and thus the global error could never be

explicitly calculated. We described in Chapter 4 ([75]) a measure of the accuracy

for a substructuring test without having to simulate the complete system and use

this approach in Chapter 6 where the emulated dynamics are unknown. This

was achieved by observing the local control error, e2, in conjunction with the

capacity utilization of the actuator compared to its manufacture's linear performance

envelope. Although this method only provides a confidence value to the experiential

substructuring test, it is a generic result which holds for all substructured systems.
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An industrial example of real-time dynamic substructuring

The substructuring experiment discussed in Chapter 6 represents the current "state

of the art" in real-time dynamic substructuring as it is one of the first tests of its

kind at the time of print. Other substructuring experiments have being performed

on industrial sized dampers, such as Horiuchi et al. [61], however none which involve

such complex dynamics of both the substructure and the numerical model for an

active commercial project. We build on all the fundamental concepts introduced and

developed through Chapter 1 to Chapter 5 in order to achieve successful substructure

testing of the AgustaWestland EHlOI lag damper connected to a numerical model

of an individual blade excited by flight test data. The lag damper itself is highly

complex due to its nonlinear piecewise smooth hysteretic characteristics and due

to its situation highly impractical to monitor during flight. Additionally, due to

flight regulations/specifications a modified lag damper cannot be used on an active

helicopter and thus means that testing of the lag damper's influence on the entire

helicopter is extremely difficult. Any other current experimental testing technique

would either loose the true dynamic behaviour of the lag damper or observe its

dynamic characteristic only in isolation.

We have clearly demonstrated the "proof of concept" of real-time dynamic sub-

structuring for such a complicated mechanical substructured system and thus a

broadening of the real-time technique from seismic testing of large civil engineering

structures. This leads us to be able to develop the substructuring experiment into

an increasingly involved test of a complete helicopter in variable flying conditions

as discussed in future work, § 7.2.

7.1.1 General conclusions

The work presented in this thesis is a detailed analysis of the fundamental principles

behind the experimental side of real-time dynamic substructuring technique. Build-
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ing on the understanding gained we use this hybrid technique in order to achieve

successful testing of the substructured EH101 helicopter lag damper. This is an

example of an industrial scale problem where no other current experimental testing

technique could reveal the level of information that is achieved through real-time

dynamic substructuring.

7.2 Recommendations for future work

The following sections are suggestions of some potential lines of work that the author

feels would complement and extend the work presented in this thesis:

Numerical modelling techniques

The work presented in this thesis is concerned with the development only of the

experimental side of real-time dynamic substructure testing. However, the accu-

racy of the numerical modelling techniques used is an essential part of achieving a

substructuring algorithm that can faithfully reproduce the dynamics of the original

structure. A vein of current research is into utilizing finite element analysis (FEA)

for the numerical model. However, at the current time, such techniques are limited

by computer power as the entire model computation must exclusively take place

within each time step At. Typically, real-time substructuring has a small sample

time, no more than a few milliseconds, thus putting a high demand on the CPU.

However, Moore's law! is a rule of thumb in the computer industry about the growth

of computing power over time and states that the growth of computing power follows

an empirical exponential law. Specifically, the total number of transistors on a CPU

(and therefore the number of calculations possible) will double every 18 months

(this is expected to hold at least until 2020). Thus higher computationally expensive

numerical modelling techniques will become increasingly practicable in the following

years to come.

1Attributed to Gordon E. Moore, the co-founder of Intel.
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Additionally, the integration strategies which are employed by the real-time algo-

rithm are also important, currently themes of research which started in PsD testing

on mixed explicit-implicit algorithms are being applied for the first time in real-time

dynamic substructuring by Wu et al. [80].

DDE analysis

Although a complete analytical and numerical DDE analysis was performed in

Chapter 3, this was only for the conceptually simple substructured systems. The

analytical power of the numerical analysis (DDE-BIFTOOL) can be applied to far

more complex systems with many degrees of freedom and many different variable

delays. First, an analysis should be done with the multi-DOF substructured system

(§ 2.3.2) for two independent delays, 71 and 72, for each of the independent transfer

systems. This will provide an insight into the coupling of the individual delay terms

on as simple a system as possible. This will result in an understanding of local and

global stability - whether passing one limit will always lead to instability.

Additionally, a complete numerical analysis for the EH101 lag damper experiment

could be performed including the compressibility of the oil within the damper itself,

details of which are given in Eyres et al. [117J. This is a complex problem as the

faster the lag damper's piston is moved the higher the effects of compressibility and

the more the damper starts to behave like a spring rather than solely providing

inertial damping. This will have a serious effect on the critical limit of stability as

the stiffer the structure the smaller the margin to instability.

Robust adaptive delay compensation

The AFP algorithm of Chapter 4 was shown to achieve high levels of synchronisation

for variable transfer system dynamics. However, there are a number of issues

associated with its use:
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• Polynomial extrapolation is fundamentally unstable.

• Adaption is only achieved on set state conditions.

• The piece-wise smooth nature of the EH101 damper causes problems due to

the non-smooth nature of the numerical model demand produced when excited

by the flight test data.

This leads us to the need for the development of a more robust delay compensation

algorithm which is already a current line of research in real-time testing. The most

comprehensive of strategies would model the transfer system dynamics on-line such

that any change in behaviour or nonlinear characteristics could be cancelled out.

However, whatever this new algorithm it will still be applicable to fit into the

framework of the robust transfer system design methodology of Chapter 5.

The EHIOI lag damper project

The work presented in this thesis is a full validation of the real-time substructuring

technique for this application, however, it does open the possibility for far more

involved substructured systems to be analysed. The following is a summary of

the potential lines of research in terms of the EHI01 lag damper project, each one

building on the ground laid by the previous one:

Numerical model validation A validation of the parametric lag damper model

by Eyres [2] is required. If its accuracy and limitations can be understood by

comparing the results to similar experimental substructuring data, it can then

be used as a powerful analytical tool for initial design criteria when access

to the full experimental substructuring rig is not available. Thus, we can

have confidence in initial development without the need to ensure real-time

performance.

Reduction in vibration transfer Typically, the dominant vibration transferred

into the helicopter fuselage are of the modes n ± 1 the number of blades.
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Using substructuring, the tunable elements of the passive lag damper (such

as orifice size, bypass diameter, viscosity, relief valve arrangement and critical

values etc.) can then be analysed in isolation and the individual effects on the

helicopter understood decoupled from the full complex dynamics.

Increased complexity of the blade numerical model Rather than substruc-

ture an individual blade and lag damper as we have done here, a more involved

multi-bladed numerical model could be developed. The entire coupled five-

bladed EH101 rotor system could then be modelled as an integrated unit,

with five individual experimental lag dampers being tested at one time. Ad-

ditionally, the analysis only uses 8 modes (4 flap modes, 3 lag modes and one

twist mode). The numerical model could be extended to take into account the

nonlinear characteristics of the composite blades for example.

Online varying of flight conditions All the work to date has concentrated on

steady state flight assuming the blades are forced periodically by a constant

matrix, modified to take into account the new force from the experimental lag

damper. A long term goal would be to encompass flight dynamics from an

entire flight, from take off to landing and including transient flying conditions

such that the modal matrices are calculated on-line.

Smart damping techniques Recently there has been a considerable research

effort into smart damping devices. In order to reduce the energy absorbed by

the lag damper (dissipated as heat), reduce specific vibration transfer and to

adapt to differing environmental conditions smart damping devices change the

amount of damping force generated adaptively during flight. However, these

devices are still only in the experimental development stage. Substructuring

would allow for far more demanding and rigorous testing of such dampers,

speeding up the development process and increasing confidence in a full scale

test on a real helicopter. In this case, the substructuring algorithm would

simply run in the background, i.e. creating the virtual testing environment,
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while the adaptive control of the smart parameters was tested. It is envisaged

that a form of higher harmonic control will be used such as currently used on

tilt rotor aircraft. This will allow active cancellation of in-plane shear loads

during flight along with potentially removing induced vertical vibration.

General recommendations

The field of real-time dynamic substructuring is maturing due to the increased un-

derstanding of the fundamental concepts, some of which have been discussed in this

thesis, and can now be viewed as an effective testing technique. At the University

of Bristol there are current research projects into substructuring a complete car and

motorbike suspension unit (on the small scale component testing front) and into

substructuring of an individual cable section from a cable-stay bride (on the large

civil structures side). However, more real-life applications need to be studied in

detail as the technique is still viewed with scepticism by some in industry.

If we take the EH101 lag damper as an example, all of the future topics are

interested in improving the effect of the lag damper on the overall helicopter and

not just the dynamics of the individual damper. This is the foresight that real-time

dynamic substructuring gives the designer/engineer; in the end, the force-velocity

characteristic of an individual lag damper is immaterial, the important criteria is

its dynamic effect on the entire helicopter. Substructuring is the most effective

technique to date that allows an engineer to understand this complex relationship.
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Appendix A

Multi-DOF numerical model

S-Function

SUMMARY: S-Functions are stand-alone C modules, written in a

predetermined way that Simulink can understand and are implemented

in a way that is directly analogous to that of model code. They contain

their own public registration function (which is called by the top-level

model code) that initializes static function pointers in its SimStruct.

When the top-level model needs to execute the S-function, it does so

via function pointers. The real-time model data structure encapsulates

model data and associated information necessary to fully describe the

model. This is an example S-Function for the numerical model of the

multi-DOF case study of § 2.3.2.

1* File
* Author
* Date

multiDOF_NM.c
Max Wallace
13/04/2004

* Abstract:
* Substructuring numerical model for the multi-DOF case study.
*/
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#define S_FUNCTION_NAME multiDOF_NM
#define S_FUNCTION_LEVEL 2

II S-Function name
II Class 2 S-Function

#include "simstruc.h" II Include public registration function

#define U(element) (*uPtrs[element]) II Pointer to Input PortO

I*z===================*

* S-function methods *

1* Function: mdllnitializeSizes =================================================
* Abstract:
* The sizes information is used by Simulink to determine the S-function
* block's characteristics (number of inputs, outputs, states, etc.).
*1

static void mdlInitializeSizes(SimStruct *S) {
ssSetNumSFcnParams(S,O); II Number of expected parameters
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S» {

return; II Parameter mismatch will be
II reported by Simulink}

ssSetNumContStates(S,4);
ssSetNumDiscStates(S,O);

II Number of continuous states

if (!ssSetNumInputPorts(S, 1» return; II Number of input ports
ssSetInputPortWidth(S, 0, 17) ; II Number of input variables
ssSetlnputPortDirectFeedThrough(S, 0, 0) j II Set input usage requirements

if (!ssSetNumOutputPorts(S, 1» return; II Number of output ports
ssSetOutputPortWidth(S, 0,4); II Number of output variables

ssSetNumSampleTimes(S, i);

ssSetNumRWork(S,O);
ssSetNumIWork(S,O);

II Fixed single step sample time
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ssSetNumPWork(S,O);
ssSetNumModes(S,O);
ssSetNumNonsampledZCs(S,O);

1* Exception free code specified to increase performance *1
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);

}

1* Function: mdlInitializeSampleTimes ===========================================
* Abstract:
* Specifiy that we have a continuous sample time.
*1

static void mdlInitializeSampleTimes(SimStruct *S) {
ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME); II Inherit sample time
ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_INITIALIZE_CONDITIONS 1* Function: mdlInitializeConditions ==========
* Abstract:
* Initialise continuous state to zero.
*1

static void mdlInitializeConditions(SimStruct *S) {
real_T *xO = ssGetContStates(S);
int_T i;

for (i = 0; i <= 3; i++) {
*xO = 0.0; II Set initial states to zero

}

}

1* Function: mdlOutputs ========================.========.= •••===•••••• =.========
* Abstract:
* Output states
*1

static void mdlOutputs(SimStruct *S, int_T tid) {
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real_T
real_T

= ssGetOutputPortRealSignal(S,O);
ssGetContStates(S);

InputRealPtrsType uPtrs ssGetInputPortRealSignalPtrs(S,O);

1* output z *1
z[O] = x[O];
z [1] .. x[2];
z[2) ,.x (1) ;
z[3] = x[3];

II z_l
II \dot{zLl
II z_2
I I \dot{zL2

}

#define MDL_DERIVATIVES 1* Function: mdlDerivatives -=_.=========================
* Abstract:
* Calculate derivatives
*1

static void mdlDerivatives(SimStruct *S) {
real_T
real_T

*dx ..ssGetdX(S);
*x ..ssGetContStates(S);

InputRealPtrsType uPtrs ..ssGetInputPortRealSignalPtrs(S,O);
real_T Fl, rdl, rvl;
real_T F2, rd2, rv2;
real_T m_l, m_2, m_3;
real_T k_l, k_2, k_31, k_32;
real_T c_l, c_2, c_31, c_32;

1* Numerical Model Inputs *1
rdl a U(O); rvl .. ucn ;
rd2 ..U(2); rv2 • U(3);
Fl ..U(4); F2 - U(5);

1* System Parameters *1
m_l • U(6); m_2 ..U(7); m_3 ..U(B);
k_l ..U(9); k_2 ..U(10); k_31 = U(ll); k_32 = U(12);
c_l ..U(13); c_2" U(14); c_31 ..U(15); c_32 = U(16);
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1* States of Eq. (2.6) *1
dx[O] = x[2];
dx[i] = x[3];
dx[2] = (Fi I m_i) _ «c_i I m_1)*(x[2] _ rvi)) _ «k_i I m_l)*(x[O] rdi));
dx[3] (F2 I m_2) _ «c_2 I m_2)*(x[3] _ rv2)) _ «k_2 I m_2)*(x[l] - rd2));

}

1* Function: mdlTerminate =======================================================
* Abstract:
* No termination needed, but we are required to have this routine.
*1

static void mdlTerminate(SimStruct *S) {
}

#ifdef MATLAB_MEX_FILE II Is this file being compiled as a HEX-file?
II MEX-file interface mechanism#include "simulink.c"

#else
#include "cg_sfun.h"
#endif

II Code generation registration function
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EHIOI blade numerical model

S-Function

SUMMARY: This S-Function works with a constants file ("iniLconst.m")

which is picked up in the initialisation phase to set the global system

parameters. Pointers to these parameters are defined at the start of the

file. This information is commercially sensitive and therefore cannot be

published.

1* File
* Author
* Date

EH101Blade_NM.c
Max Wallace
12/09/2005

* Abstract:
* Substructuring numerical model for the Westland EH101 Lag Damper project.
*1

#define S_FUNCTION_NAME EH101Blade_NM II S-Function name
#define S_FUNCTION_LEVEL 2 II Class 2 S-Function

#include "simstruc.h" II Include public registration function
#include "math.h" II Include math function for trigonometry
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#define U(element) (*uPtrs[element]) II Pointer to Input PortO
#define Ul(element) (*uPtrsl[element]) II Pointer to Input Portl
#define U2(element) (*uPtrs2[element]) II Pointer to Input Port2

#define PARAH_l(S) ssGetSFcnParam(S,O)
#define PARAH_2(S) ssGetSFcnParam(S,l)
#define PARAH_3(S) ssGetSFcnParam(S,2)
#define PARAH_4(S) ssGetSFcnParam(S,3)
#define PARAH_5(S) ssGetSFcnParam(S,4)
#define PARAH_6(S) ssGetSFcnParam(S,5)
#define PARAH_7(S) ssGetSFcnParam(S,6)
#define PARAH_8(S) ssGetSFcnParam(S,7)
#define PARAH_9(S) ssGetSFcnParam(S,8)
#define PARAM_lO(S) ssGetSFcnParam(S,9)
#define PARAH_ll(S) ssGetSFcnParam(S,lO)
#define PARAH_12(S) ssGetSFcnParam(S,ll)
#define PARAH_13(S) ssGetSFcnParam(S,12)
#define PARAH_14(S) ssGetSFcnParam(S,13)
#define PARAH_15(S) ssGetSFcnParam(S,14)
#define PARAH_16(S) ssGetSFcnParam(S,15)

II Pointers to global system parameters

#define PARAH_17(S) ssGetSFcnParam(S,16)
#define PARAH_la(S) ssGetSFcnParam(S,17)
#define PARAH_19(S) ssGetSFcnParam(S,18)
#define PARAM_20(S) ssGetSFcnParam(S,19)
#define PARAM_21(S) ssGetSFcnParam(S,20)
#define PARAH_22(S) ssGetSFcnParam(S,21)
#define PARAH_23(S) ssGetSFcnParam(S,22)
'define PARAH_24(S) ssGetSFcnParam(S,23)
#define PARAH_25(S) ssGetSFcnParam(S,24)
#define PARAH_26(S) ssGetSFcnParam(S,25)
#define PARAH_27(S) ssGetSFcnParam(S,26)
#define PARAH_28(S) ssGetSFcnParam(S,27)
'define PARAH_29(S) ssGetSFcnParam(S,28)
#define PARAH_30(S) ssGetSFcnParam(S,29)
#define PARAH_31(S) ssGetSFcnParam(S,30)
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#define PARAM_32(S) ssGetSFcnParam(S,31)
#define PARAM_33(S) ssGetSFcnParam(S,32)
#define PARAM_34(S) ssGetSFcnParam(S,33)
#define PARAM_35(S) ssGetSFcnParam(S,34)
#define PARAM_36(S) ssGetSFcnParam(S,35)
#define PARAM_37(S) ssGetSFcnParam(S,36)
#define PARAM_38(S) ssGetSFcnParam(S,37)

1*====================*
* S-function methods *
*====================*1

1* Function: mdllnitializeSizes =================================================
* Abstract:
* The sizes information is used by Simulink to determine the S-function
* block's characteristics (number of inputs, outputs, states, etc.).
*1

static void mdllnitializeSizes(SimStruct *S) {
ssSetNumSFcnParams(S, 38); II Number of expected parameters
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S» {

return; II Parameter mismatch will be reported by Simulink
}

ssSetNumContStates(S, 21);
ssSetNumDiscStates(S,O);

II Number of continuous states

if (!ssSetNumlnputPorts(S, 3» return; II Number of input ports
ssSetInputPortWidth(S, 0, 1); II Input variables for PortO
ssSetInputPortDirectFeedThrough(S. O. 1); II Usage requirements for PortO
ssSetInputPortWidth(S. 1, 2); II Input variables for Portl
ssSetInputPortDirectFeedThrough(S. 1. 1); II Usage requirements for Portl
ssSetInputPortWidth(S. 2. 1); II Input variables for Port2
ssSetInputPortDirectFeedThrough(S. 2, 1); II Usage requirements for Port2

if (!ssSetNumOutputPorts(S. 1» return; II Number of output ports
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ssSetOutputPortWidth(S, 0, i): II Number of output variables

ssSetNumSampleTimes(S, 1) :

ssSetNumRWork(S, 8):
ssSetNumIWork(S, 0):
ssSetNumPWork(S, 0):
ssSetNumModes(S, 0):

II Fixed single step sample time
II Number of work functions

ssSetNumNonsampledZCs(S,O):

1* Exception free code specified to increase performance *1
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE):

}

1* Function: mdlInitializeSampleTimes -================================-=========
* Abstract:
* Specifiy that we have a continuous sample time.
*1

static void mdlInitializeSampleTimes(SimStruct *S) {
ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME): II Inherit sample time
ssSetOffsetTime(S, 0,0.0):

}

'define MDL_INITIALIZE_CONDITIONS 1* Function: mdlInitializeConditions .-.====.==
* Abstract:
* Initialise continuous states to zero.
*1

static void mdlInitializeConditions(SimStruct *S) {
real_T *xO • ssGetContStates(S):
int_T i:

for (i • 0; i <- 21; i++) {
*xO - 0.0; II Set initial states to zero

}

}
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1* Function: mdlOutputs =========================================================
* Abstract:
* Output blade velocity
*1

static void mdlOutputs(SimStruct *S, int_T tid) {
1* Inputs, outputs, work vectors and states: *1
real_T
real_T
real_T

*y = ssGetOutputPortRealSignal(S,O)j
ssGetContStates(S)j

= ssGetRWork(S)j
ssGetInputPortRealSignalPtrs(S,O)j

= ssGetInputPortRealSignalPtrs(S,l)j
= ssGetInputPortRealSignalPtrs(S,2)j

InputRealPtrsType uPtrs
InputRealPtrsType uPtrsl
InputRealPtrsType uPtrs2

1* Variable Arrays: *1
real_T *RHS = mxGetPr(PARAM_l(S»j
reaLT *MFR150 = mxGetPr(PARAM_3(S»j
real_T *LDMFR150 = mxGetPr(PARAM_4(S»j
real_T *LDMFmodel = mxGetPr(PARAM_5(S»j
real_T *VDdashbar = mxGetPr(PARAM_6(S»j
real_T *VIDbar = mxGetPr(PARAM_7(S»j
reaLT *T_delta = mxGetPr(PARAM_8(S»j
real_T *T_gamma = mxGetPr(PARAM_9(S»j
real_T *TgTd = mxGetPr(PARAM_10(S»j
real_T *FDAMP = mxGetPr(PARAM_ll(S»j
real_T *FGC = mxGetPr(PARAM_12(S»j

1* Fixed Arrays: *1
const real_T *MFcoeff = mxGetPr(PARAM_13(S»j
const real_T *LDMFcoeff = mxGetPr(PARAM_14(S»j
const real_T *w = mxGetPr(PARAM_15(S»j
const real_T *Ap • mxGetPr(PARAM_16(S»j
const real_T *Thetao_deg = mxGetPr(PARAM_17(S»j
const real_T *Al_deg = mxGetPr(PARAM_18(S»j
const real_T *Bl_deg = mxGetPr(PARAM_19(S»j
const real_T *VDdash = mxGetPr(PARAM_20(S»j
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const real_T *VID = mxGetPr(PARAM_21(S»j
const real_T *dVDdashdtheta = mxGetPr(PARAM_22(S»j
const real_T *WoDdash = mxGetPr(PARAM_23(S»j
const real_T *VoDdash = mxGetPr(PARAM_24(S»j
const real_T *WDdash = mxGetPr(PARAM_25(S»j
const real_T *Rins = mxGetPr(PARAM_26(S»j
const real_T *Thetao = mxGetPr(PARAM_27(S»j
const real_T *ThetaD = mxGetPr(PARAM_28(S»j
const real_T *Al = mxGetPr(PARAM_29(S»j
const real_T *Bl = mxGetPr(PARAM_30(S»j
const real_T *XBD = mxGetPr(PARAM_31(S»j
const real_T *XB = mxGetPr(PARAM_32(S»j
const real_T *XLDE = mxGetPr(PARAM_33(S»j
const real_T *TID • mxGetPr(PARAM_34(S»j
const real_T *WID = mxGetPr(PARAM_35(S»j

1* Run-time Variables: *1

int_T
real_T
real_T
real_T
real_T
real_T

i, j j

Time, pressure, Modes_S, Modes_Ej
delTheta_deg, velocity, F_pounds, VDAMPX, anslj
BETA, ZETA, BETAD, ZETAD, THETA, THETAD, DELTA, GAMMAj
XDdash, YDdash, ZDdash, LDdash, XBDX, XBDY, XBDZj
Tl, T2, T3, T4, T5, T6, 17j

Time· U(O)j
Modes_S = Ul(O)-lj
Modes_E • Ul(l)-lj
pressure - U2(O)/Ap[O]j

1* Delta pitch angle (deg) *1

deITheta_deg. Thetao_deg[O]-Al_deg[O]*cos(w[O]*Time)-Bl_deg[O]*sin(w[O]*Time)j

for (i - OJ i <- 7; i - i + 1) {
VDdashbar[i] • VDdash[i]j
VIDbar[i] • VID[i]j

II VDdash in deg; VDdashbar in rad
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}

VDdashbar[2] = VDdash[2] + dVDdashdtheta[2]*delTheta_deg*VDdash[3]:
VIDbar[2] = VID[2] + dVDdashdtheta[2]*delTheta_deg*VID[3]:

BETA = WoDdash[O]:
ZETA = VoDdash[O] :
BETAD = OJ

ZETAD = 0:

for (i = Modes_S: i <= Modes_E; i = i + 1) {
BETA = BETA + x[(2*i)+5] *WDdash[i] *Rins[O] :
ZETA = ZETA + x[(2*i)+5]*VDdashbar[i]*Rins[O]:
II Rate of change (d/d(psi»
BETAD = BETAD + x[(2*i)+6]*WDdash[i]*Rins[O]:
ZETAD = ZETAD + x[(2*i)+6]*VDdashbar[i]*Rins[O]:

II Flap slope (rads)
II Lag slope (rads)

II Convert to time
II from azimuth

}

1* Pitch angle (rads) *1

THETA = Thetao[O] + ThetaD[O] - A1[0]*cos(w[0]*Time) - B1[O]*sin(w[O]*Time):
THETAD = (A1[0]*sin(w[O]*Time)-B1[O]*cos(w[0]*Time»*w[O]:

1* Global position of outboard damper attachment D *1
XDdash = cos(BETA)*cos(ZETA)*XBD[O] + XB[O]:
YDdash· sin(ZETA)*XBD[O] + XB[l]:
ZDdash = sin(BETA)*cos(ZETA)*XBD[O] + XB[2] :

LDdash = sqrt«(XDdash-XLDE[O])*(XDdash-XLDE[O]»+«YDdash-XLDE[l])* ...
...(YDdash-XLDE[1]»+«ZDdash-XLDE[2])*(ZDdash-XLDE[2])»:

DELTA = atan«ZDdash-XLDE[2])/(XDdash-XLDE[O]»: II LDdash cancels
GAMMA = acos«sqrt«(XDdash-XLDE[O])*(XDdash-XLDE[O]»+«ZDdash-XLDE[2])* ...

...(ZDdash-XLDE[2]»»/LDdash);

XBDX = XBD[O]:
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XBDY = XBD[l];
XBDZ ,.XBD[2];

1* Derivation from original R1SO code *1
ansl • -sin(DELTA)*sin(ZETA)*cos(BETA)*cos(GAMMA)* ...

...cos(THETA)*BETAD*XBDY+sin(DELTA)*cos(BETA)* .
·..cos(GAMMA)*cos(THETA)*THETAD*XBDY+sin(DELTA)* .
...cos(BETA)*cos(GAMMA)*cos(ZETA)*BETAD*XBDX+sin(THETA)* .
...sin(ZETA)*cos(BETA)*cos(GAHMA)*cos(DELTA)*THETAD*XBDY+ .
...sin(THETA)*cos(BETA)*cos(GAHMA)*cos(DELTA)*cos(ZETA)* .
...ZETAD*XBDZ-sin(THETA)*cos(BETA)*cos(GAHMA)*cos(DELTA)* .
·..BETAD*XBDY+sin(ZETA)*cos(BETA)*cos(GAMMA)*cos(DELTA)* .
...cos(THETA)*THETAD*XBDZ-sin(ZETA)*cos(BETA)*cos(GAMMA)* .
...cos(DELTA)*ZETAD*XBDX-cos(BETA)*cos(GAMMA)*cos(DELTA)* .
...cos(THETA)*cos(ZETA)*ZETAD*XBDY-cos(BETA).cos(GAHMA)* .
...cos(DELTA)*cos(THETA)*BETAD*XBDZ;

VDAMPX. sin (BETA) *sin(DELTA) *sin(THETA) *sin(ZETA)*cos (GAMMA) *THETAD* ..,
...XBDY+sin(BETA) *sin(DELTA) *s in (THETA) *cos (GAMMA) *cos (ZETA) * ...
·..ZETAD*XBDZ-sin(BETA)*sin(DELTA)*sin(THETA)*cos(GAMMA)*BETAD •...
·..XBDY+sin(BETA)*sin(DELTA)*sin(ZETA)*cos(GAMMA)*cos(THETA)* ..,
...THETAD*XBDZ-sin(BETA) *sin(DELTA) *sin(ZETA) *cos (GAMMA) *ZETA D* .
...XBDX-sin(BETA) *sin(DELTA)*cos (GAMMA) *cos (THETA) *cos (ZETA )* .
...ZETAD*XBDY-sin(BETA)*sin(DELTA)*cos(GAMMA)*cos(THETA)*BETAD* .
...XBDZ-sin (BETA) *sin(THETA)*sin(ZETA) *cos (GAMMA) *cos (DELTA) * .
·..BETAD*XBDZ+sin(BETA)*sin(THETA)*cos(GAMMA)*cos(DELTA)*THETAD* ...
·..XBDZ+sin(BETA)*sin(ZETA)*cos(GAMMA)*cos(DELTA)*cos(THETA)* ...
...BETAD*XBDY-sin(BETA)*cos(GAMMA) *cos (DELTA) *cos (THETA) *THETAD* ...
·..XBDY-sin(BETA)*cos(GAMMA)*cos(DELTA)*cos(ZETA)*BETAD*XBDX+ ...
...sin(GAMMA)*sin(THETA)*sin(ZETA)*ZETAD*XBDZ-sin(GAMMA)* .
·..sin(THETA)*cos(ZETA)*THETAD*XBDY-sin(GAMMA)*sin(ZETA)* .
...cos(THETA)*ZETAD*XBDY-sin(GAMMA)*cos(THETA)*cos(ZETA)*THETAD .
...*XBDZ+sin(GAMMA)*cos(ZETA)*ZETAD*XBDX+sin(DELTA)*sin(THETA)* .
...sin(ZETA)*cos(BETA)*cos(GAMMA)*BETAD*XBDZ-sin(DELTA)* ...
...sin(THETA)*cos(BETA)*cos(GAMMA)*THETAD*XBDZ+ansl;
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velocity = (-VDAMPX*2.54)/100;
F_pounds = (Ap[0]*pressure*2.205)/9.80665;

II Velocities are negative
II lbf for MF150

FDAMP[O] = F_pounds;
FDAMP[l] = 0;
FDAMP[2] = 0;

1* Damper translation matrices *1
T_delta[O] = cos(DELTA);
T_delta[l] = 0;
T_delta[2] sin(DELTA);
T_delta[3] = 0;
T_delta[4] = 1;
T_delta[5] = 0;
T_delta[6] = -sin(DELTA);
T_delta[7] = 0;
T_delta[8] = cos(DELTA);

T_gamma[O] = cos(GAMMA);
T_gamma[l] sin(GAMMA);
T_gamma[2] 0;
T_gamma[3] = -sin(GAMMA);
T_gamma[4] = cos(GAMMA);
T_gamma[5] = 0;
T_gamma[6] = 0;
T_gamma[7] = 0;
T_gamma[8] = 1;

1* Forces and moments at C due to motion of damper:
* FGD = T_delta*T_gamma*FDAMP; FGC = FGD;
*1

1* T_delta*T_gamma *1
for (i = 0; i <= 2; i = i + 1) {

for (j = 0; j <= 2; j = j + 1) {
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TgTd[(i*3)+j] = T_delta[j]*T_gamma[(i*3)] + T_delta[j+3]* ...
...T_gamma[(i*3)+1) + T_delta[j+6]*T_gamma[(i*3)+2);

}

}

1* TgTd*FDAMP *1
for (i = 0; i <= 2; i = i + 1) {

FGC[i] = TgTd[i]*FOAMP[O] + TgTd[i+3)*FDAMP[1) + TgTd[i+6)*FDAMP[2);
}

1* Calculating forcing by lag damper to put into equations of motion
* Taken from NLDAM3 bottom section - all linearized for small angles
*1

for (i = Modes_S; i <= Modes_E; i • i + 1) {

T1 = FGC[O)*(-THETA*XBD[l) - XBO[2] - XBO[O]*BETA)*WDdash[i);
T2 - FGC[0)*(THETA*XBD[2] - XBO[l) - XBO[O]*ZETA)*VDdashbar[i];
T3 a FGC[0]*(-BETA*XBD[l)*ZETA*XBD[2])*TID[i);
T4 - FGC[l)*VIDbar[i);
T5· -FGC[l)*XBD[2]*TID[i];
T6 • FGC(2)*WID[i);
T7 = FGC(2)*XBD[l)*TID[i);

LDMFmodel[i] • (T1+T2+T3+T4+T5+T6+T7)/(w[O)*w[O]*Rins[O);

1* Fourier reconstruction to find modal forcings at time T *1
MFR150[i) • MFcoeff[(i*17)];
LDMFR150[i] - LOMFcoeff[(i*17)];
for (j • 0; j <= 7; j • j + 1) {

MFR150[i] • MFR150[i] - MFcoeff[(i*17)+(2*j)+1]* ...
...cos«j+1)*w[O)*Time) - MFcoeff[(i*17)+(2*j)+2]* ...
...sin«j+1)*w[O)*Time);

LDMFR150[i] • LDMFR150[i) - LOMFcoeff[(i*17)+(2*j)+1)* ...
...cos«j+1)*w[O]*Time) - LDMFcoeff[(i*17)+(2*j)+2)* ...
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}

RHS[i] = MFR150[i] _ LDMFR150[i] + LDMFmodel[i];
}

yeo] = velocity;
for (i = 0; i <= 7; i = i + 1) {

rei] = RHS[i];

II Output Velocity
II Pass work function to next time step

}

}

#define MDL_DERIVATIVES 1* Function: mdlDerivatives =============================
*1
* Abstract:
* Calculate derivatives
*1

static void mdlDerivatives(SimStruct *S) {
1* Inputs, outputs, work vectors and states: *1
real_T
real_T
real_T

= ssGetdX(S);
ssGetContStates(S);
ssGetRWork(S);

1* Variable Arrays: *1
reaLT *RHS_in = mxGetPr(PARAM_2(S»;

1* Fixed Arrays: *1
const real_T *w = mxGetPr(PARAM_15(S»;
const real_T *1 = mxGetPr(PARAM_36(S»j
const real_T *lambda = mxGetPr(PARAM_37(S»j
const real_T *v = mxGetPr(PARAM_38(S»;
int_T ij

for (i = OJ i <= 7j i = i + 1) {
RHS_in[i] = rei] j

I I Work function from last time step

}
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1* States of Eq. (6.2) *1
dx[O] '"'0;
dx[l] '"'0;
dx[2J '"'0;
dx[3J == 0;
dx[4J '"'0;
dx[5J '"'x[6J;
dx[6] '"'«RHS_in[0]/I[O)-(lambda[O)*lambda[O)*x[5)-2*v[O]* ...

·..lambda (0)*x [6JIw [OJ)* (w (0)*w (0)) ;
dx [7] .. x [B] ;
dx[B] .. «RHS_in[1]/I[1])-(lambda[1]*lambda[l])*x[7]-2*v[1]* ...

·..lambda [1]*x [B]Iw [0])* (w [0]*w [0]) ;
dx[9) '"x[10];
dx[10J '"'«RHS_in[2J/I[2])-(lambda[2]*lambda[2)*x[9]-2*v[2]* ...

...lambda[2)*x[10]/w[0])*(w[0)*w[0]);
dx [l1J ...x (12) ;
dx[12J • «RHS_in[3)/I[3])-(lambda[3)*lambda[3J)*x[11J-2*v[3)* ...

·..lambda [3]*x [12]Iw [OJ)* (w [0]*w [0]) ;
dx [13] • x [14] ;
dx(14) • «RHS_in[4]/I[4)-(lambda[4]*lambda[4])*x[13]-2*v[4]* ...

·..lambda [4]*x [14)Iw [0])* (w [0]*w [0]) ;
dx [15] • x [16] ;
dx[16] - «RHS_in[5]/I[5])-(lambda[5]*lambda[5])*x[15]-2*v[5]* ...

·..lambda[5] *x [16]Iw [0])* (w [0]*w [0]) ;
dx[17] .. x[18];
dx[18J • «RHS_in[6J/I[6J)-(lambda[6]*lambda[6])*x[17J-2*v[6]* ...

·..lambda [6J*x [18]Iw [0])* (w [0]*w [OJ) ;
dx [19] • x [20] ;
dx[20] • «RHS_in[7J/I[7)-(lambda[7J*lambda[7J)*x[19J-2*v[7J* ...

.. .lambda[7]*x[20]/w[0])*(w[0]*w[0]);

}

/* Function: mdlTerminate ••=•• =.-.---_._._._.=._ =._---========-========
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* Abstract:
* No termination needed, but we are required to have this routine.

*1
static void mdlTerminate(SimStruct *S) {
}

#ifdef MATLAB_MEX_FILE
#include "simulink.c"
#else
#include "cg_sfun.h"
#endif

II Is this file being compiled as a MEX-file?
II MEX-file interface mechanism

II Code generation registration function
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