68 research outputs found

    Whip Use by Jockeys in a Sample of Australian Thoroughbred Races—An Observational Study

    Get PDF
    The use of whips by jockeys is an issue. The current study viewed opportunistic high-speed footage of 15 race finishes frame-by-frame to examine the outcomes of arm and wrist actions (n = 350) on 40 horses viewed from the left of the field. Any actions fully or partially obscured by infrastructure or other horses were removed from the database, leaving a total of 104 non-contact sweeps and 134 strikes. For all instances of arm actions that resulted in fully visible whip strikes behind the saddle (n = 109), the outcomes noted were area struck, percentage of unpadded section making contact, whether the seam made contact and whether a visible indentation was evident on impact. We also recorded use of clockwise or counter-clockwise arm action from each jockey's whip, whether the whip was held like a tennis racquet or a ski pole, whether the hind leg on the side of the impact was in stance or swing phase and whether the jockey's arm was seen traveling above shoulder height. The goal of the study was to characterize the area struck and the visual impact of whip use at the level of the horse. We measured the ways in which both padded and unpadded sections of the whip made impact. There was evidence of at least 28 examples, in 9 horses, of breaches of the whip rules (one seam contact, 13 contacts with the head, and 14 arm actions that rose above the height of the shoulder). The whip caused a visible indentation on 83% of impacts. The unpadded section of the whip made contact on 64% of impacts. The results call into question the ability of Stewards to effectively police the rules concerning whip use and, more importantly, challenge the notion that padding the distal section of whips completely safeguards horses from any possible whip-related pain

    Immediate and short-term pain relief by acute sciatic nerve press: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite much research, an immediately available, instantly effective and harmless pain relief technique has not been discovered. This study describes a new manipulation: a "2-minute sciatic nerve press", for rapid short-term relief of pain brought on by various dental and renal diseases.</p> <p>Methods</p> <p>This randomized, single-blind, placebo-controlled trial ran in three hospitals in Anhui Province, China, with an enrollment of 66 out of 111 solicited patients aged 16 to 74 years. Patients were recruited sequentially, by specific participating physicians at their clinic visits to three independent hospitals. The diseases in enrolled dental patients included dental caries, periodontal diseases and dental trauma. Renal diseases in recruits included kidney infections, stones and some other conditions. Patients were randomly assigned to receive the "2-minute sciatic nerve press" or the "placebo press". For the "2-minute sciatic nerve press", pressure was applied simultaneously to the sciatic nerves at the back of the thighs, using the fists while patients lay prone. For the "placebo press", pressure was applied simultaneously to a parallel spot on the front of the thighs, using the fists while patients lay supine. Each fist applied a pressure of 11 to 20 kg for 2 minutes, after which, patients arose to rate pain.</p> <p>Results</p> <p>The "2-minute sciatic nerve press" produced greater pain relief than the "placebo press". Within the first 10 minutes after sciatic pressure, immediate pain relief ratings averaged 66.4% (p < 0.001) for the dental patients, versus pain relief of 20% for the placebo press, and, 52.2% (p < 0.01) for the renal patients, versus relief of 14% for the placebo press, in median. The method worked excellently for dental caries and periodontal diseases, but poorly for dental trauma. Forty percent of renal patients with renal colic did not report any pain relief after the treatment.</p> <p>Conclusion</p> <p>Two minutes of pressure on both sciatic nerves can produce immediate significant conduction analgesia, providing a convenient, safe and powerful way to overcome clinical pain brought on by dental diseases and renal diseases for short term purposes.</p> <p>Trial registration</p> <p>ACTR 12606000439549</p

    A new analgesic method, two-minute sciatic nerve press, for immediate pain relief: a randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current analgesics have drawbacks such as delays in acquisition, lag-times for effect, and side effects. We recently presented a preliminary report of a new analgesic method involving a two-minute sciatic nerve press, which resulted in immediate short-term relief of pain associated with dental and renal diseases. The present study investigated whether this technique was effective for pain associated with other disease types, and whether the relief was effective for up to one hour.</p> <p>Methods</p> <p>This randomized, placebo-controlled, parallel-group trial was conducted in four hospitals in Anhui Province, China. Patients with pain were sequentially recruited by participating physicians during clinic visits, and 135 patients aged 15 – 80 years were enrolled. Dental disease patients included those with acute pulpitis and periapical abscesses. Renal disease patients included those with kidney infections and/or stones. Tumor patients included those with nose, breast, stomach and liver cancers, while Emergency Room patients had various pathologies. Patients were randomly assigned to receive a "sciatic nerve press" in which pressure was applied simultaneously to the sciatic nerves at the back of both thighs, or a "placebo press" in which pressure was applied to a parallel region on the front of the thighs. Each fist applied a pressure of 11 – 20 kg for 2 minutes. Patients rated their level of pain before and after the procedure.</p> <p>Results</p> <p>The "sciatic nerve press" produced immediate relief of pain in all patient groups. Emergency patients reported a 43.5% reduction in pain (p < 0.001). Significant pain relief for dental, renal and tumor patients lasted for 60 minutes (p < 0.001). The peak pain relief occurred at the 10 – 20<sup>th </sup>minutes, and the relief decreased 47% by the 60<sup>th </sup>minutes.</p> <p>Conclusion</p> <p>Two minutes of pressure on both sciatic nerves produced immediate significant short-term conduction analgesia. This technique is a convenient, safe and powerful method for the short-term treatment of clinical pain associated with a diverse range of pathologies.</p> <p>Trial registration</p> <p>Current Controlled Trials ACTRN012606000439549</p

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region

    ATP receptors in pain sensation: Involvement of spinal microglia and P2X4 receptors

    Get PDF
    There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. At first, it was thought that ATP was simply involved in acute pain, since ATP is released from damaged cells and excites directly primary sensory neurons by activating their receptors. However, neither blocking P2X/Y receptors pharmacologically nor suppressing the expression of P2X/Y receptors molecularly in sensory neurons or in the spinal cord had an effect on acute physiological pain. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in pathological pain states, particularly in neuropathic pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. An important advance in our understanding of the mechanisms involved in neuropathic pain has been made by a recent work demonstrating the crucial role of ATP receptors (i.e., P2X3 and P2X4 receptors). In this review, we summarize the role of ATP receptors, particularly the P2X4 receptor, in neuropathic pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of ATP receptors including P2X4 receptors may lead to new strategies for the management of neuropathic pain

    P2 receptors and chronic pain

    Get PDF
    There is abundant evidence that extracellular ATP and other nucleotides have an important role in pain signaling at both the periphery and in the CNS. The focus of attention now is on the possibility that endogenous ATP and its receptor system might be activated in chronic pathological pain states, particularly in neuropathic and inflammatory pain. Neuropathic pain is often a consequence of nerve injury through surgery, bone compression, diabetes or infection. This type of pain can be so severe that even light touching can be intensely painful; unfortunately, this state is generally resistant to currently available treatments. In this review, we summarize the role of ATP receptors, particularly the P2X4, P2X3 and P2X7 receptors, in neuropathic and inflammatory pain. The expression of P2X4 receptors in the spinal cord is enhanced in spinal microglia after peripheral nerve injury, and blocking pharmacologically and suppressing molecularly P2X4 receptors produce a reduction of the neuropathic pain behaviour. Understanding the key roles of these ATP receptors may lead to new strategies for the management of intractable chronic pain
    • …
    corecore