8,411 research outputs found
Solar cell radiation response near the interface of different atomic number materials
The response of cobalt 60 irradiated N/P silicon solar cells was measured as a function of the atomic number of the medium adjacent to the cell and the direction of the gamma ray beam. The interpositioning of various thicknesses of aluminum between the adjacent material and the cell had the effect of moving the cell to various locations in an approximate monatomic numbered medium. Using this technique the solar cell response was determined at various distances from the interface for gold and beryllium. The results were compared with predictions based upon ionization chamber measurements of dose perturbations in aluminum and found to agree within five percent. Ionization chamber data was then used to estimate the influence of various base contact materials
Computer programs for the geomagnetic field Final report
Spherical-harmonic expansion - least squares program for improving parameter precision and statistical program for field mappin
Effect of Gravitational Lensing on Measurements of the Sunyaev-Zel'dovich Effect
The Sunyaev-Zel'dovich (SZ) effect of a cluster of galaxies is usually
measured after background radio sources are removed from the cluster field.
Gravitational lensing by the cluster potential leads to a systematic deficit in
the residual intensity of unresolved sources behind the cluster core relative
to a control field far from the cluster center. As a result, the measured
decrement in the Rayleigh-Jeans temperature of the cosmic microwave background
is overestimated. We calculate the associated systematic bias which is
inevitably introduced into measurements of the Hubble constant using the SZ
effect. For the cluster A2218, we find that observations at 15 GHz with a beam
radius of 0'.4 and a source removal threshold of 100 microJy underestimate the
Hubble constant by 6-10%. If the profile of the gas pressure declines more
steeply with radius than that of the dark matter density, then the ratio of
lensing to SZ decrements increases towards the outer part of the cluster.Comment: 11 pages, 3 figures, submitted to ApJ
Prediction of Viking lander camera image quality
Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances
A reliable Pade analytical continuation method based on a high accuracy symbolic computation algorithm
We critique a Pade analytic continuation method whereby a rational polynomial
function is fit to a set of input points by means of a single matrix inversion.
This procedure is accomplished to an extremely high accuracy using a novel
symbolic computation algorithm. As an example of this method in action we apply
it to the problem of determining the spectral function of a one-particle
thermal Green's function known only at a finite number of Matsubara frequencies
with two example self energies drawn from the T-matrix theory of the Hubbard
model. We present a systematic analysis of the effects of error in the input
points on the analytic continuation, and this leads us to propose a procedure
to test quantitatively the reliability of the resulting continuation, thus
eliminating the black magic label frequently attached to this procedure.Comment: 11 pages, 8 eps figs, revtex format; revised version includes
reference to anonymous ftp site containing example codes (MapleVr5.1
worksheets) displaying the implementation of the algorithm, including the
padematinv.m library packag
Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program Final report, 1 Feb. 1969 - 28 Feb. 1970
Technology utilization efforts by Biomedical Application Team member institut
ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic
It is well known that apps running on mobile devices extensively track and
leak users' personally identifiable information (PII); however, these users
have little visibility into PII leaked through the network traffic generated by
their devices, and have poor control over how, when and where that traffic is
sent and handled by third parties. In this paper, we present the design,
implementation, and evaluation of ReCon: a cross-platform system that reveals
PII leaks and gives users control over them without requiring any special
privileges or custom OSes. ReCon leverages machine learning to reveal potential
PII leaks by inspecting network traffic, and provides a visualization tool to
empower users with the ability to control these leaks via blocking or
substitution of PII. We evaluate ReCon's effectiveness with measurements from
controlled experiments using leaks from the 100 most popular iOS, Android, and
Windows Phone apps, and via an IRB-approved user study with 92 participants. We
show that ReCon is accurate, efficient, and identifies a wider range of PII
than previous approaches.Comment: Please use MobiSys version when referencing this work:
http://dl.acm.org/citation.cfm?id=2906392. 18 pages, recon.meddle.mob
Si/SiO 2 interface studies by spectroscopic immersion ellipsometry and atomic force microscopy
The dependence of the Si/SiO2interfacecharacteristics on the thickness and oxidation temperature for SiO2filmsgrown on different Si orientations was studied by spectroscopic immersion ellipsometry (SIE) and atomic force microscopy(AFM). Essentially, SIE uses liquids that match the refractive index of the films, thereby optically removing the films and consequently increasing the sensitivity to the interface. We show that as the thickness of the thermally grown SiO2 overlayer increases, the thickness of the suboxide layer at the interface also increases, and the average radius of the crystalline silicon protrusions (roughness) at the interface decreases for the three different Si orientations (100), (110), and (111), and two different oxidation temperatures (800 and 1000 °C) studied. The dependence of the interface roughness on the thickness of the SiO2 overlayer was confirmed by AFM. The results include unintentionally and intentionally roughened Si samples and are shown to be consistent with the commonly accepted Si oxidation model
Stark deceleration of CaF molecules in strong- and weak-field seeking states
We report the Stark deceleration of CaF molecules in the strong-field seeking
ground state and in a weak-field seeking component of a rotationally-excited
state. We use two types of decelerator, a conventional Stark decelerator for
the weak-field seekers, and an alternating gradient decelerator for the
strong-field seekers, and we compare their relative merits. We also consider
the application of laser cooling to increase the phase-space density of
decelerated molecules.Comment: 10 pages, 8 figure
- …