55 research outputs found
The deleterious effect of crossfostering in rat pups on hypoxic-ischemic injury tolerance and hypothermic neuroprotection
We study the effect of hypothermia (HT) following hypoxic-ischemic (HI) brain injury in postnatal day 7 (P7) rats. In 2015, new European Union animal transport regulations prompted a change in practice at the breeding facility, which henceforth crossfostered P3 litters to P8 older lactating dam prior to transportation. It is generally assumed that crossfostering does not significantly affect the experimental results. The aim of this study was to examine whether crossfostering affects our model consistency by modifying injury susceptibility and hypothermic neuroprotection. We analysed 219 pups (56 litters) from 11 experiments conducted between 2013 and 2015: 73 non-crossfostered and 146 crossfostered pups. At P7, all pups underwent unilateral common carotid artery ligation followed by 50min of hypoxia (8% O2, 36°C). Immediately after this mild insult, the pups were randomised to post-insult normothermia (NT) or HT treatment. Pups were culled at P14. Injury was assessed by area loss of the ipsilateral hemisphere and histopathology scoring of hippocampus, cortex, thalamus, and basal ganglia. Crossfostered pups had double the injury compared to non-crossfostered pups irrespective of treatment group. Hypothermic neuroprotection was statistically significant, but with a smaller and less consistent effect in crossfostered pups (relative neuroprotection 16% vs. 31% in non-crossfostered). These results demonstrate hypothermic neuroprotection following a mild HI insult. A representative subset of 41 animals were also assessed for evidence of microglial reactivity, however no detectable difference in microglial reactivity was observed between any of the groups. In conclusion, crossfostering alters outcomes in our established model through reduced insult tolerance and variable neuroprotection. Crossfostering as a common breeding practice is a largely unexplored variable in animal research that may result in invalid research conclusions if inadequately adjusted for by larger group sizes. As a result, crossfostering is likely to be inconsistent with the principles of replacement, reduction, and refinement
Treatment temperature and insult severity influence the neuroprotective effects of therapeutic hypothermia
Therapeutic hypothermia (HT) is standard care for moderate and severe neonatal hypoxic-ischaemic encephalopathy (HIE), the leading cause of permanent brain injury in term newborns. However, the optimal temperature for HT is still unknown, and few preclinical studies have compared multiple HT treatment temperatures. Additionally, HT may not benefit infants with severe encephalopathy. In a neonatal rat model of unilateral hypoxia-ischaemia (HI), the effect of five different HT temperatures was investigated after either moderate or severe injury. At postnatal-day seven, rat pups underwent moderate or severe HI followed by 5 h at normothermia (37 °C), or one of five HT temperatures: 33.5 °C, 32 °C, 30 °C, 26 °C, and 18 °C. One week after treatment, neuropathological analysis of hemispheric and hippocampal area loss, and CA1 hippocampal pyramidal neuron count, was performed. After moderate injury, a significant reduction in hemispheric and hippocampal loss on the injured side, and preservation of CA1 pyramidal neurons, was seen in the 33.5 °C, 32 °C, and 30 °C groups. Cooling below 33.5 °C did not provide additional neuroprotection. Regardless of treatment temperature, HT was not neuroprotective in the severe HI model. Based on these findings, and previous experience translating preclinical studies into clinical application, we propose that milder cooling should be considered for future clinical trials
Climate-driven introduction of the Black Death and successive plague reintroductions into Europe
The Black Death, originating in Asia, arrived in the Mediterranean harbors of Europe in 1347 CE, via the land and sea trade routes of the ancient Silk Road system. This epidemic marked the start of the second plague pandemic, which lasted in Europe until the early 19th century. This pandemic is generally understood as the consequence of a singular introduction of Yersinia pestis, after which the disease established itself in European rodents over four centuries. To locate these putative plague reservoirs, we studied the climate fluctuations that preceded regional plague epidemics, based on a dataset of 7,711 georeferenced historical plague outbreaks and 15 annually resolved tree-ring records from Europe and Asia. We provide evidence for repeated climate-driven reintroductions of the bacterium into European harbors from reservoirs in Asia, with a delay of 15 ± 1 y. Our analysis finds no support for the existence of permanent plague reservoirs in medieval Europe
Morphine and fentanyl exposure during therapeutic hypothermia does not impair neurodevelopment
Background
Hypothermia-treated and intubated infants with moderate or severe hypoxic-ischemic encephalopathy (HIE) usually receive morphine for sedation and analgesia (SA) during therapeutic hypothermia (TH) and endotracheal ventilation. Altered drug pharmacokinetics in this population increases the risk of drug accumulation. Opioids are neurotoxic in preterm infants. In term infants undergoing TH, the long-term effects of morphine exposure are unknown. We examined the effect of opioid administration during TH on neurodevelopmental outcome and time to extubation after sedation ended.
Methods
In this prospectively collected population-based cohort of 282 infants with HIE treated with TH (2007–2017), the cumulative opioid dose of morphine and equipotent fentanyl (10–60 µg/kg/h) administered during the first week of life was calculated. Clinical outcomes and concomitant medications were also collected. Of 258 survivors, 229 underwent Bayley-3 neurodevelopmental assessments of cognition, language and motor function at 18–24 months. Multivariate stepwise linear regression analysis was used to examine the relation between cumulative opioid dose and Bayley-3 scores. Three severity-groups (mild-moderate-severe) were stratified by early (<6 h) amplitude-integrated electroencephalography (aEEG) patterns.
Findings
The cumulative dose of opioid administered as SA during TH was median (IQR) 2121 µg/kg (1343, 2741). Time to extubation was independent of SA dose (p > 0.2). There was no significant association between cumulative SA dose and any of the Bayley-3 domains when analysing the entire cohort or any of the aEEG severity groups.
Interpretation
Higher cumulative opioid doses in TH-treated infants with HIE was not associated with worse Bayley-3 scores at 18–24 months of age.
Funding
The Bristol cooling program was funded by the Children's Medical Research Charity SPARKS managing donations for our research from the UK and US, the UK Moulton Foundation, the Lærdal Foundation for Acute Medicine in Norway and the Norwegian Research Council (JKG)
Human ectoparasites and the spread of plague in Europe during the Second Pandemic
Plague, caused by the bacterium Yersinia pestis, can spread through human populations by multiple transmission pathways. Today, most human plague cases are bubonic, caused by spillover of infected fleas from rodent epizootics, or pneumonic, caused by inhalation of infectious droplets. However, little is known about the historical spread of plague in Europe during the Second Pandemic (14-19th centuries), including the Black Death, which led to high mortality and recurrent epidemics for hundreds of years. Several studies have suggested that human ectoparasite vectors, such as human fleas (Pulex irritans) or body lice (Pediculus humanus humanus), caused the rapidly spreading epidemics. Here, we describe a compartmental model for plague transmission by a human ectoparasite vector. Using Bayesian inference, we found that this model fits mortality curves from nine outbreaks in Europe better than models for pneumonic or rodent transmission. Our results support that human ectoparasites were primary vectors for plague during the Second Pandemic, including the Black Death (1346-1353), ultimately challenging the assumption that plague in Europe was predominantly spread by rats
Variability and sex-dependence of hypothermic neuroprotection in a rat model of neonatal hypoxic-ischaemic brain injury:a single laboratory meta-analysis
Therapeutic hypothermia (HT) is standard care for term infants with hypoxic–ischaemic (HI) encephalopathy. However, the efficacy of HT in preclinical models, such as the Vannucci model of unilateral HI in the newborn rat, is often greater than that reported from clinical trials. Here, we report a meta-analysis of data from every experiment in a single laboratory, including pilot data, examining the effect of HT in the Vannucci model. Across 21 experiments using 106 litters, median (95% CI) hemispheric area loss was 50.1% (46.0–51.9%; n = 305) in the normothermia group, and 41.3% (35.1–44.9%; n = 317) in the HT group, with a bimodal injury distribution. Median neuroprotection by HT was 17.6% (6.8–28.3%), including in severe injury, but was highly-variable across experiments. Neuroprotection was significant in females (p < 0.001), with a non-significant benefit in males (p = 0.07). Animals representing the median injury in each group within each litter (n = 277, 44.5%) were also analysed using formal neuropathology, which showed neuroprotection by HT throughout the brain, particularly in females. Our results suggest an inherent variability and sex-dependence of the neuroprotective response to HT, with the majority of studies in the Vannucci model vastly underpowered to detect true treatment effects due to the distribution of injury
- …