7,409 research outputs found

    Summary of Supersonic Jet and Rocket Noise

    Get PDF
    This paper summarizes a two-part special session, “Supersonic Jet and Rocket Noise,” which was held during the 174th Meeting of the Acoustical Society of America in New Orleans, Louisiana. The sessions were cosponsored by the Noise and Physical Acoustics Technical Committees and consisted of talks by government, academic, and industry researchers from institutions in the United States, Japan, France, and India. The sessions described analytical, computational, and experimental approaches to both fundamental and applied problems on model and full-scale jets and rocket exhaust plumes

    A phase II study of capecitabine and oxalplatin combination chemotherapy in patients with inoperable adenocarcinoma of the gall bladder or biliary tract

    Get PDF
    Background: Advanced biliary tract carcinomas are associated with a poor prognosis, and palliative chemotherapy has only modest benefit. This multi-centre phase II study was conducted to determine the efficacy of capecitabine in combination with oxaliplatin in patients with inoperable gall bladder or biliary tract cancer. Methods: This was a Phase II, non-randomised, two-stage Simon design, multi-centre study. Ethics approval was sought and obtained by the North West MREC, and then locally by the West Glasgow Hospitals Research Ethics Com mittee. Eligible patients with inoperable locally advanced or metastatic adenocarcinoma of the gall bladder or biliary tract and with adequate performance status, haematologic, renal, and hepatic function were treated with capecit abine (1000 mg/m2 po, twice daily, days 1–14) and oxaliplatin (130 mg/m2 i.v., day 1) every 3 weeks for up to six cycles. The primary objective of the study was to determine the objective tumour response rates (complete and partial). The secondary objectives included assessment of toxicity, progression-free survival, and overall survival. Results: Forty-three patients were recruited between July 2003 and December 2005. The regimen was well tolerated with no grade 3/4 neutropenia or thrombocytopenia. Grade 3/4 sensory neuropathy was observed in six patients. Two-thirds of patients received their chemotherapy without any dose delays. Overall response rate was 23.8 % (95 % CI 12.05–39.5 %). Stable disease was observed in a further 13 patients (31 %) and progressive disease observed in 12 (28.6 %) of patients. The median progression-free survival was 4.6 months (95 % CI 2.8–6.4 months; Fig. 1) and the median overall survival 7.9 months (95 % CI 5.3–10.4 months; Fig. 2). Conclusion: Capecitabine combined with oxaliplatin has a lower disease control and shorter overall survival than the combination of cisplatin with gemcitabine which has subsequently become the standard of care in this disease. How ever, capecitabine in combination with oxaliplatin does have modest activity in this disease, and can be considered as an alternative treatment option for patients in whom cisplatin and/or gemcitabine are contra-indicated

    Characterization of High-Power Rocket and Jet Noise Using Near-Field Acoustical Holography

    Get PDF
    Structural fatigue, hearing damage, and community disturbances are all consequences of rocket and jet noise, especially as they become more powerful. Noise-reduction schemes require accurate characterization of the noise sources within rocket plumes and jets. Nearfield acoustical holography (NAH) measurements were made to visualize the sound field in the jet exhaust region of an F-22 Raptor. This is one of the largest-scale applications of NAH since its development in the 1980s. A scan-based holographic measurement was made using a 90-microphone array with 15 cm regular grid spacing, for four engine power settings. The array was scanned through 93 measurement positions, along three different planes in a region near 7 m from the jet centerline and 23 m downstream. In addition, 50 fixed reference microphones were placed along the ground 11.6 m from the jet centerline, spanning 30.8 m. The reference microphones have been used to perform virtual coherence on the measurement planes. Statistically-optimized NAH (SONAH) has been used to backpropagate the sound field to the source region for low frequencies, and to identify jet noise characteristics. Ground reflection interference and other non-ideal measurement conditions must be dealt with. Details relating to jet coherence lengths and their relation to reference microphone requirements will be discussed. Preliminary results of this ongoing work will be presented. [Work supported by Air Force SBIR.

    Characterization of Rocket and Jet Noise using Near-Field Acoustic Holography Methods

    Get PDF
    As rockets and jets on military aircraft become more powerful, the noise they produce can lead to structural fatigue, hearing damage, and community disturbances. Noise-reduction technologies and sound radiation prediction require accurate characterization of the noise sources within rocket plumes and jets. Near-field acoustical holography techniques were used to visualize the sound field in the region of the jet exhaust on a high-performance military jet. Holography requires a coherent measurement of the sound field, but the size of the jet made a dense measurement over the entire source region impractical. Thus, a scan-based measurement was performed, after which a partial field decomposition (PFD) procedure was used to tie together incoherent scans. Then, the effective aperture of the measurement was extended utilizing the rigid ground reflection and a processing technique called analytic continuation. Finally, the three-dimensional sound field was reconstructed using statistically-optimized near-field acoustical holography (SONAH). This is the first time such a map has been obtained for a full-scale military aircraft. [Work supported by Air Force SBIR.

    A Magnetically-Switched, Rotating Black Hole Model For the Production of Extragalactic Radio Jets and the Fanaroff and Riley Class Division

    Get PDF
    A model is presented in which both Fanaroff and Riley class I and II extragalactic jets are produced by magnetized accretion disk coronae in the ergospheres of rotating black holes. While the jets are produced in the accretion disk itself, the output power still is an increasing function of the black hole angular momentum. For high enough spin, the black hole triggers the magnetic switch, producing highly-relativistic, kinetic-energy-dominated jets instead of Poynting-flux-dominated ones for lower spin. The coronal mass densities needed to trigger the switch at the observed FR break power are quite small (1015gcm3\sim 10^{-15} g cm^{-3}), implying that the source of the jet material may be either a pair plasma or very tenuous electron-proton corona, not the main accretion disk itself. The model explains the differences in morphology and Mach number between FR I and II sources and the observed trend for massive galaxies to undergo the FR I/II transition at higher radio power. It also is consistent with the energy content of extended radio lobes and explains why, because of black hole spindown, the space density of FR II sources should evolve more rapidly than that of FR I sources. If the present model is correct, then the ensemble average speed of parsec-scale jets in sources distinguished by their FR I morphology (not luminosity) should be distinctly slower than that for sources with FR II morphology. The model also suggests the existence of a population of high-redshift, sub-mJy FR I and II radio sources associated with spiral or pre-spiral galaxies that flared once when their black holes were formed but were never again re-kindled by mergers.Comment: 14 pages, 2 figures, final version to appear in Sept Ap

    Nonaffine rubber elasticity for stiff polymer networks

    Get PDF
    We present a theory for the elasticity of cross-linked stiff polymer networks. Stiff polymers, unlike their flexible counterparts, are highly anisotropic elastic objects. Similar to mechanical beams stiff polymers easily deform in bending, while they are much stiffer with respect to tensile forces (``stretching''). Unlike in previous approaches, where network elasticity is derived from the stretching mode, our theory properly accounts for the soft bending response. A self-consistent effective medium approach is used to calculate the macroscopic elastic moduli starting from a microscopic characterization of the deformation field in terms of ``floppy modes'' -- low-energy bending excitations that retain a high degree of non-affinity. The length-scale characterizing the emergent non-affinity is given by the ``fiber length'' lfl_f, defined as the scale over which the polymers remain straight. The calculated scaling properties for the shear modulus are in excellent agreement with the results of recent simulations obtained in two-dimensional model networks. Furthermore, our theory can be applied to rationalize bulk rheological data in reconstituted actin networks.Comment: 12 pages, 10 figures, revised Section II

    Cell Contact–Dependent Outer Membrane Exchange in Myxobacteria: Genetic Determinants and Mechanism

    Get PDF
    Biofilms are dense microbial communities. Although widely distributed and medically important, how biofilm cells interact with one another is poorly understood. Recently, we described a novel process whereby myxobacterial biofilm cells exchange their outer membrane (OM) lipoproteins. For the first time we report here the identification of two host proteins, TraAB, required for transfer. These proteins are predicted to localize in the cell envelope; and TraA encodes a distant PA14 lectin-like domain, a cysteine-rich tandem repeat region, and a putative C-terminal protein sorting tag named MYXO-CTERM, while TraB encodes an OmpA-like domain. Importantly, TraAB are required in donors and recipients, suggesting bidirectional transfer. By use of a lipophilic fluorescent dye, we also discovered that OM lipids are exchanged. Similar to lipoproteins, dye transfer requires TraAB function, gliding motility and a structured biofilm. Importantly, OM exchange was found to regulate swarming and development behaviors, suggesting a new role in cell–cell communication. A working model proposes TraA is a cell surface receptor that mediates cell–cell adhesion for OM fusion, in which lipoproteins/lipids are transferred by lateral diffusion. We further hypothesize that cell contact–dependent exchange helps myxobacteria to coordinate their social behaviors

    A discrete, unitary, causal theory of quantum gravity

    Full text link
    A discrete model of Lorentzian quantum gravity is proposed. The theory is completely background free, containing no reference to absolute space, time, or simultaneity. The states at one slice of time are networks in which each vertex is labelled with two arrows, which point along an adjacent edge, or to the vertex itself. The dynamics is specified by a set of unitary replacement rules, which causally propagate the local degrees of freedom. The inner product between any two states is given by a sum over histories. Assuming it converges (or can be Abel resummed), this inner product is proven to be hermitian and fully gauge-degenerate under spacetime diffeomorphisms. At least for states with a finite past, the inner product is also positive. This allows a Hilbert space of physical states to be constructed.Comment: 38 pages, 9 figures, v3 added to exposition and references, v4 expanded prospects sectio
    corecore