9,218 research outputs found

    Conclusion of Viking Lander Imaging Investigation: Picture catalog of experiment data record

    Get PDF
    The images returned by the two Viking landers during the Viking Survey Mission are presented in this report. Listing of supplemental information which describe the conditions under which the images were acquired are included. Subsets of the images are listed in a variety of sequences to aid in locating images of interest. The format and organization of the digital magnetic tape storage of the images are described. A brief description of the mission and the camera system is also included

    A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices

    Full text link
    The generalized second law is proven for semiclassical quantum fields falling across a causal horizon, minimally coupled to general relativity. The proof is much more general than previous proofs in that it permits the quantum fields to be rapidly changing with time, and shows that entropy increases when comparing any slice of the horizon to any earlier slice. The proof requires the existence of an algebra of observables restricted to the horizon, satisfying certain axioms (Determinism, Ultralocality, Local Lorentz Invariance, and Stability). These axioms are explicitly verified in the case of free fields of various spins, as well as 1+1 conformal field theories. The validity of the axioms for other interacting theories is discussed.Comment: 44 pages, 1 fig. v3: clarified Sec. 2; signs, factors/notation corrected in Eq. 75-80, 105-107; reflects published version. v4: clearer axioms in Sec. 2.3, fixed compensating factor of 2 errors in Eq. 54,74 etc., and other errors. Results unaffected. v5: fixed typos. v6: replaced faulty 1+1 CFT argument, added note on recent progres

    Planning assistance for the 30/20 GHz program, volume 3

    Get PDF
    The three basic experiment categories and consolidated experiments proposed by members of the Carrier Working Group are defined by category and by carrier. The three experiment categories are: (1) Possible Service (PS); (2) Possible Service and Technology (PSAT); and (3) Possible Technology (PT). Under Task 9 Western Union provided review, recommendations and critique of the NASA generated Statement of Work (SOW) defining the technical requirements governing design, launch and operation of the 30/20 GHz experimental systems

    Planning assistance for the 30/20 GHz program, volume 1

    Get PDF
    Functional requirements for the 30/20 GHz communication system, planning assistance for the 30/20 GHz program, and a review of specified conceptual designs and recommendations are provided

    Peritoneal Dialysis Catheters

    Get PDF
    In peritoneal dialysis, a well-functioning catheter is of great importance because a dysfunctional catheter may be associated with exit-site infection, peritonitis, reduced efficiency of dialysis, and overall quality of treatment, representing one of the main barriers to optimal use of peritoneal dialysis. This chapter reviews the literature on indications and contraindications for peritoneal dialysis, peritoneal dialysis catheter design and materials, the techniques of insertion, complications, and method of removal of dialysis catheters

    Mesoscopic Effects in Quantum Phases of Ultracold Quantum Gases in Optical Lattices

    Full text link
    We present a wide array of quantum measures on numerical solutions of 1D Bose- and Fermi-Hubbard Hamiltonians for finite-size systems with open boundary conditions. Finite size effects are highly relevant to ultracold quantum gases in optical lattices, where an external trap creates smaller effective regions in the form of the celebrated "wedding cake" structure and the local density approximation is often not applicable. Specifically, for the Bose-Hubbard Hamiltonian we calculate number, quantum depletion, local von-Neumann entropy, generalized entanglement or Q-measure, fidelity, and fidelity susceptibility; for the Fermi-Hubbard Hamiltonian we also calculate the pairing correlations, magnetization, charge-density correlations, and antiferromagnetic structure factor. Our numerical method is imaginary time propagation via time-evolving block decimation. As part of our study we provide a careful comparison of canonical vs. grand canonical ensembles and Gutzwiller vs. entangled simulations. The most striking effect of finite size occurs for bosons: we observe a strong blurring of the tips of the Mott lobes accompanied by higher depletion, and show how the location of the first Mott lobe tip approaches the thermodynamic value as a function of system size.Comment: 13 pages, 10 figure

    Proceedings of the inaugural International Summit for Medical Nutrition Education and Research

    Get PDF
    © 2016 The Royal Society for Public Health Medical Nutrition Education (MNE) has been identified as an area with potential public health impact. Despite countries having distinctive education systems, barriers and facilitators to effective MNE are consistent across borders, demanding a common platform to initiate global programmes. A shared approach to supporting greater MNE is ideal to support countries to work together. In an effort to initiate this process, the Need for Nutrition Education/Innovation Programme group, in association with their strategic partners, hosted the inaugural International Summit on Medical Nutrition Education and Research on August 8, 2015 in Cambridge, UK. Speakers from the UK, the USA, Canada, Australia, New Zealand, Italy, and India provided insights into their respective countries including their education systems, inherent challenges, and potential solutions across two main themes: (1) Medical Nutrition Education, focused on best practice examples in competencies and assessment; and (2) Medical Nutrition Research, discussing how to translate nutrition research into education opportunities. The Summit identified shared needs across regions, showcased examples of transferrable strategies and identified opportunities for collaboration in nutrition education for healthcare (including medical) professionals. These proceedings highlight the key messages presented at the Summit and showcase opportunities for working together towards a common goal of improvement in MNE to improve public health at large

    Isochronal annealing effects on local structure, crystalline fraction, and undamaged region size of radiation damage in Ga-stabilized δ\delta-Pu

    Full text link
    The effects on the local structure due to self-irradiation damage of Ga stabilized δ\delta-Pu stored at cryogenic temperatures have been examined using extended x-ray absorption fine structure (EXAFS) experiments. Extensive damage, seen as a loss of local order, was evident after 72 days of storage below 15 K. The effect was observed from both the Pu and Ga sites, although less pronounced around Ga. Isochronal annealing was performed on this sample to study the annealing processes that occur between cryogenic and room temperature storage conditions, where damage is mostly reversed. Damage fractions at various points along the annealing curve have been determined using an amplitude-ratio method, standard EXAFS fitting, and a spherical crystallite model, and provide information complementary to previous electrical resistivity- and susceptibility-based isochronal annealing studies. The use of a spherical crystallite model accounts for the changes in EXAFS spectra using just two parameters, namely, the crystalline fraction and the particle radius. Together, these results are discussed in terms of changes to the local structure around Ga and Pu throughout the annealing process and highlight the unusual role of Ga in the behavior of the lowest temperature anneals.Comment: 13 pages, 10 figure
    • …
    corecore