36,144 research outputs found

    Boussinesq-like multi-component lattice equations and multi-dimensional consistency

    Full text link
    We consider quasilinear, multi-variable, constant coefficient, lattice equations defined on the edges of the elementary square of the lattice, modeled after the lattice modified Boussinesq (lmBSQ) equation, e.g., y~z=x~−x\tilde y z=\tilde x-x. These equations are classified into three canonical forms and the consequences of their multidimensional consistency (Consistency-Around-the-Cube, CAC) are derived. One of the consequences is a restriction on form of the equation for the zz variable, which in turn implies further consistency conditions, that are solved. As result we obtain a number of integrable multi-component lattice equations, some generalizing lmBSQ.Comment: 24 page

    An Analysis Of Fatigue Crack Growth Of A Notched Aircraft Component Under Compression-Dominated Spectrum Loading

    Get PDF
    In engineering structures, fatigue cracks often emanate from geometrical discontinuities such as holes and notches. Experimentally it has been observed that there exists a notch-affected zone, in which the crack growth exhibits a transitional behaviour. Depending on the loading level and the geometry of the notch, the crack growth rate may initially decrease with crack length to reach a minimum. It will then either grow at an accelerated rate, or stop growing. This report details ongoing work in modelling crack growth in the presence of notch plasticity. The local stress-strain distribution ahead of a notch root is determined based on an empirical distribution of the equivalent stress, and the evolution of the notch root stress and strain is calculated using Neuber's rule and an Armstrong-Chaboche type nonlinear kinematic hardening model. The stress intensity factor is then calculated using a Green's function approach. A crack growth analysis program has been developed, implementing the above procedures

    The night-sky at the Calar Alto Observatory

    Get PDF
    We present a characterization of the main properties of the night-sky at the Calar Alto observatory for the time period between 2004 and 2007. We use optical spectrophotometric data, photometric calibrated images taken in moonless observing periods, together with the observing conditions regularly monitored at the observatory, such as atmospheric extinction and seeing. We derive, for the first time, the typical moonless night-sky optical spectrum for the observatory. The spectrum shows a strong contamination by different pollution lines, in particular from Mercury lines, which contribution to the sky-brightness in the different bands is of the order of ~0.09 mag, ~0.16 mag and ~0.10 mag in B, V and R respectively. The zenith-corrected values of the moonless night-sky surface brightness are 22.39, 22.86, 22.01, 21.36 and 19.25 mag arcsec^-2 in U, B, V, R and I, which indicates that Calar Alto is a particularly dark site for optical observations up to the I-band. The fraction of astronomical useful nights at the observatory is ~70%, with a ~30% of photometric nights. The typical extinction at the observatory is k_V~0.15 mag in the Winter season, with little dispersion. In summer the extinction has a wider range of values, although it does not reach the extreme peaks observed at other sites. The median seeing for the last two years (2005-6) was ~0.90", being smaller in the Summer (~0.87") than in the Winter (~0.96"). We conclude in general that after 26 years of operations Calar Alto is still a good astronomical site, being a natural candidate for future large aperture optical telescopes.Comment: 16 pages, 5 figures, accepted for publishing in the Publications of Astronomical Society of the Pacific (PASP

    The laminariaceae off North Shapinsay, Orkney Islands; changes from 1947 to 1955

    Get PDF
    Changes in the crops of Laminariaceae over a number of years around Scotland have been investigated. This paper summarises the results of five surveys carried out in 1947, 1951, 1952, 1953 and 1955 in North Shapinsay, Orkney Islands. Considerable losses were found between 1947 and 1952, but thereafter recovery commenced and has continued. Some of the ecological factors are analysed and discussed

    The Effect of Novel Endophyte and Insecticide Seed Treatment on the Establishment of Long Rotation or Perennial Ryegrass Plants in the Presence of Adult Argentine Stem Weevil (\u3cem\u3eListronotus bonariensis\u3c/em\u3e)

    Get PDF
    Argentine stem weevil (Listronotus bonariensis (Kuschel)) is a recognised pasture pest throughout most regions of New Zealand including an increasing threat to the southern half of the South Island (Popay et al. 2011). Mitigation options for control of adult Argentine stem weevil (ASW) during establishment of ryegrass are available. The following study investigated the potential for seed infected with novel endophytic fungi Neotyphodium sp.(Clavicipitaceae: Hypocreales) and/or seed treated with systemic insecticide to improve the survivability of ryegrass seedlings in the presence of adult ASW in South Otago, New Zealand

    The F-Landscape: Dynamically Determining the Multiverse

    Full text link
    We evolve our Multiverse Blueprints to characterize our local neighborhood of the String Landscape and the Multiverse of plausible string, M- and F-theory vacua. Building upon the tripodal foundations of i) the Flipped SU(5) Grand Unified Theory (GUT), ii) extra TeV-Scale vector-like multiplets derived out of F-theory, and iii) the dynamics of No-Scale Supergravity, together dubbed No-Scale F-SU(5), we demonstrate the existence of a continuous family of solutions which might adeptly describe the dynamics of distinctive universes. This Multiverse landscape of F-SU(5) solutions, which we shall refer to as the F-Landscape, accommodates a subset of universes compatible with the presently known experimental uncertainties of our own universe. We show that by secondarily minimizing the minimum of the scalar Higgs potential of each solution within the F-Landscape, a continuous hypervolume of distinct minimum minimorum can be engineered which comprise a regional dominion of universes, with our own universe cast as the bellwether. We conjecture that an experimental signal at the LHC of the No-Scale F-SU(5) framework's applicability to our own universe might sensibly be extrapolated as corroborating evidence for the role of string, M- and F-theory as a master theory of the Multiverse, with No-Scale supergravity as a crucial and pervasive reinforcing structure.Comment: 15 Pages, 7 Figures, 1 Tabl

    Induced Shrinkage and Structural Reorganisation in Ammonia-Treated Wood of Corsican Pine

    Get PDF
    The ammonia-induced shrinkage of Corsican pine wood (Pinus nigra var. calabrica) was determined over a wide range of temperature, from the melting point (-78 C) to above the critical temperature (132 C) of liquid anhydrous ammonia. The swelling of wood was also measured but over a slightly more limited temperature range. The observed swelling and induced shrinkage of wood are explained in terms of two principal mechanisms: crimping and internal swelling of latewood and collapse of earlywood fibres. Confirmation of these mechanisms was provided by electron microscopy studies. Wood is most effectively plasticized between -5 and -33 C and this would seem to be the optimum temperature range for treating wood

    Enhanced Stability of Superheavy Nuclei due to High-Spin Isomerism

    Get PDF
    Configuration-constrained calculations of potential-energy surfaces in even-even superheavy nuclei reveal systematically the existence at low excitation energies of multi-quasiparticle states with deformed axially symmetric shapes and large angular momenta. These results indicate the prevalence of long-lived, multi-quasiparticle isomers. In a quantal system, the ground state is usually more stable than the excited states. In contrast, in superheavy nuclei the multi-qausiparticle excitations decrease the probability for both fission and α\alpha decay, implying enhanced stability. Hence, the systematic occurrence of multi-qausiparticle isomers may become crucial for future production and study of even heavier nuclei. The energies of multi-quasiparticle states and their α\alpha decays are calculated and compared to available data.Comment: 4 pages, 5 figures, accepted for publication in PR
    • 

    corecore