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ABSTRACT: In engineering structures, fatigue cracks often emanate from geometrical discontinuities such 
as holes and notches.  Experimentally it has been observed that there exists a notch-affected zone, in which 
the crack growth exhibits a transitional behaviour.  Depending on the loading level and the geometry of the 
notch, the crack growth rate may initially decrease with crack length to reach a minimum.  It will then either 
grow at an accelerated rate, or stop growing.  This report details ongoing work in modelling crack growth in 
the presence of notch plasticity.  The local stress-strain distribution ahead of a notch root is determined based 
on an empirical distribution of the equivalent stress, and the evolution of the notch root stress and strain is 
calculated using Neuber’s rule and an Armstrong-Chaboche type nonlinear kinematic hardening model.  The 
stress intensity factor is then calculated using a Green’s function approach.  A crack growth analysis program 
has been developed, implementing the above procedures. 
 

1 INTRODUCTION 
Engineering structures subjected to cyclic load often fail by fatigue at geometrical discontinuities 
such as holes, notches and other sudden shape changes.  To analyse the durability and damage 
tolerance of such components it is important to know the stress distribution near the notch.  This is 
different from the traditional static strength analysis where only the notch root stress is required, 
and where the component is deemed to have failed if that stress exceeds the material yield stress.  
For components managed according to the philosophy of damage tolerance such as aero-structures, 
the yielding of material at the notch root is permitted, as long as the stress does not cause unstable 
crack growth and any stable crack propagation can be accurately predicted.  If the notch root plastic 
zone size is negligible compared with the crack size, the normal engineering practice is to apply 
linear elastic fracture mechanics (LEFM), and the crack growth correlating parameter, e.g., ffeK∆  is 
calculated using remote stress and various approximate formulas.  However, there are cases when 
the plastic zone size is large compared with the crack size.  One example is the cold proof load test 
of the wing pivot fitting of F111 aircraft, in which significant plastic deformation takes place near 
geometric discontinuities such as the fuel flow vent holes. 

It is, therefore, important to determine the stress distribution as well as the evolution of the stress 
field near a notch root.  A considerable amount of work has been carried out to determine the notch 
root stress, but relatively fewer studies have been performed on the elastic-plastic stress distribution 
near a notch root.  Ball [1990] proposed a method of using the elastic stress distribution and a 
generalized Neuber’s rule to determined the notch root stress field, but the method suffers from the 
fact that Neuber’s rule was used to calculate the elastic-plastic response stress at a distance from the 
notch root.  Based on the results of extensive finite element studies, Wang et al [1999] developed a 
procedure for determining the elastic-plastic stress distribution for static loading.   

In this paper, a general procedure for the determination of notch root stress field is presented.  
The notch root stress and its evolution under cyclic loading are determined using Neuber’s rule and 
a nonlinear kinematic constitutive model.  The method developed by Wang et al [1999] is extended 
to cyclic loading, and modified to ensure the continuity of stress and load constancy.  A detailed 
numerical procedure is presented, and preliminary numerical results are used to demonstrate the 
potential of the procedure developed. 
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2 NEAR-NOTCH STRESS DISTRIBUTION 

2.1 The material constitutive model 
The Armstrong-Chaboche[1986] type constitutive model is chosen to model the notch plasticity, 
because of its capability to model kinematic and isotropic hardening, and capturing trasient 
behaviour such as strain ratchetting and mean stress relaxation[Chaboche 1986].  Although 
mathematically complicated, its implementation has proved to be rather robust [Hu et al. 2001; Hu 
and Wang 2003].  In the case of uniaxial loading, the model may be summarised by the following 
set of equations, representing the yield surface, the evolution rule for the back stress and the 
isotropic hardening, 
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where σ is the response stress, X  the back stress, yσ  the uniaxial yield stress.  C and γ are two 

material constants to be determined from the cyclic stress-strain curve of the material, pε and p the 
plastic strain and the equivalent plastic strain, respectively.  In Eqn (1) R represents the effect of 
isotropic hardening, and it is described by the function defined in Eqn (3), in which sR and b are 
two material constants.  The symbol ν takes the value of +1 or –1 depending on the load direction.  
It should be pointed out that isotropic hardening can be turned off by setting 0=sR , but for some 
materials it may be necessary to keep isotropic hardening to represent the experimental data 
accurately.  Assuming proportional loading, the constitutive model can be readily applied for multi-
axial loading. 

2.2 Notch root stress and strain 
The notch stress-strain response can be determined by using Neuber’s rule and the constitutive 
model outlined above.  Denoting the Young’s modulus of the material by E  and the far field strain 
by e∆ , Neuber’s rule [Neuber 1961] states that the response stress range σ∆ and strain range 
ε∆ satisfies 
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Therefore, for a given increment in remote load, the local stress and strain response can be 
determined from the constitutive equations and Neuber’s rule.  In fact, the above two equations can 
be combined to give the following implicit function of plastic strain pε , which can be solved 
numerically using Newton-Raphson’s method, 
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The stress and strain ranges can then be calculated from Eqn (4) and (5) above. 

2.3 Near-notch stress distribution 
To be specific, let us consider a specimen with a central hole in a plate.  In this case, the elastic 
stress distribution is known [Wang et al. 1999], with a stress concentration factor of about 3 at the 
hole edge (the theoretical value of 3 is achieved when the width of the plate is very large).  If the 
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applied load is high enough to cause yielding at the edge, then elastic-plastic stress will be bounded 
by the yield criterion. To determine the distribution quantitatively, we need to know the plastic zone 
size, the distribution of stress within the plastic zone and that outside the plastic zone. 

2.4 Elastic-plastic response 
Based on finite element analysis, it has been proposed that the equivalent stress range would follow 
a relation described by the following function, 
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where A and α  are constants to be determined from the consideration of stress continuity at the 
elastic-plastic boundary, and the load balance, and 0σ  is either the flow stress for the first half 
cycle, or twice the proportional limit for subsequent yielding.  The two constants can be determined 
as follows. 

First, at the elastic-plastic boundary pxx = , we have (ignoring isotropic hardening), 
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Therefore we have 
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where px  is the plastic zone size.  Substituting this into (8), we have 
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At the notch root, the elastic-plastic response stress eqσ∆  can be determined using Neuber’s rule.  
Therefore, we have the following relation at the notch root 
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Solving for α , we obtain the following relationship between α  and xp 
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Substituting this back to Eqn (8), we have a distribution of equivalent stress that is solely 
determined by the plastic zone size xp.  Once α  is determined, the equivalent stress at any point x 
can be calculated from 
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The parameter xp can be determined by considering the fact that whether yielding occurs or not, the 
load carried by the specimen is the same.  Therefore, 
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where σ∆  is the difference in the assumed elastic-plastic stress distribution in the y-direction and 
the elastic stress distribution at px , 
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Once the distribution of the equivalent stress is thus determined, the stress yyσ  at any position x  
may be calculated in a similar fashion as detailed in [Wang et al. 1999]. 

3 THE CRACK GROWTH MODEL 
The fatigue crack growth model implemented in FASTRAN [Newman 1992] is based on the crack 
closure model extensively studied by several researchers [Führing and Seeger 1979; Newman 1981; 
Wang and Gustavsson 1987].  This model attempts to simulate the experimental observation made 
by Elber [1971] that due to the residual plastic deformation left in the wake of a growing crack, the 
crack remains closed during part of the subsequent tensile loading, and the crack only grows when 
it is fully open.   

In FASTRAN, the crack tip plastic zone and the crack wake are discretized into strip elements.  
Each element undergoes elastic-perfect plastic deformation under cyclic loading, and based on the 
amount of crack extension calculated, some crack tip elements are ‘broken up’ to facilitate crack 
growth.  Due to the permanent plastic deformation in these elements they may come into contact 
upon subsequent unloading, thus causing crack closure.  It should be noted that closure may occur 
when the remote stress is still tensile.  According to the crack closure model, further crack growth 
can only happen if the external load is such that the crack is fully open, and this external stress is 
known as the crack opening stress.  Hence the effective crack growth driving force is determined by 
the stress range between the maximum stress and the crack opening stress.   

For crack growth with severe notch plasticity, two distinct stages can be considered for the crack 
growth: (a) the crack tip is engulfed in the notch plastic zone, and (b) the crack tip has grown out of 
the notch plastic zone.  As a first approximation, it is proposed that the effect of notch plasticity is 
solely reflected in the calculation of maxK in openmaxeff KKK −=∆ , while openK  may be 
approximated by the existing FASTRAN solution, i.e. by using a scaled remote stress (taking into 
consideration of the stress concentration caused by the notch) to calculate the crack opening stress. 

4 CALCULATION OF THE STRESS INTENSITY FACTOR USING A GREENS 
FUNCTION APPROACH 

For the analysis of crack growth, the stress intensity factor needs to be computed for each loading 
cycle.  When the stress distribution ahead of the notch root has been determined by the procedure 
detailed above, the stress intensity factor at maximum stress can be determined using Green’s 
function approach and Bueckner’s principle: the crack tip stress intensity factor for a traction free 
crack in an externally loaded body is equivalent to that for a crack with an applied pressure 
distribution in a body with no externally applied loads when the applied pressure is equivalent to the 
stress field that would exist if the externally loaded body were crack-free.  Hence, the basic formula 
for K  is given by 
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where c  is the current crack length, )(xG  the Green’s function and )(xσ  the stress distribution.  It 
should be pointed out that the stress distribution is calculated disregarding the existence of the 
crack.  For a given remote load S , a different notch configuration leads to a different stress 
distribution )(xσ , and a different crack geometry gives different Green’s functions.  When these 
functions are established, the above integration may be performed numerically using a globally 
adaptive scheme based on Gauss-Kronrod rules, as shown, for instance by Press et al [1997]. 

4.1 Two symmetric through cracks from a hole 
The Green’s function for two radially symmetric through cracks at a circular hole in an infinite plate 
was developed by Wu and Carlsson [1991].  For a symmetric but otherwise arbitrarily distributed 
load system on the crack faces, the stress intensity factor can be found by the Green’s function 
method, Eqn (16).  As there is no closed formula for the Green’s function, numerical results in 
terms of a function 2,FI  over the full range of the two independent, normalized parameters Rc /  and 

cx /  were developed by Wu and Carlsson [1991], with  
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and the values of 1A , 2A  and 3A  are given in tabulated format. 

4.2 Numerical example 
The above algorithms have been implemented in a crack growth analysis program, CGAP, which is 
based on the crack growth model of FASTRAN, with an added graphical user interface, a residual 
stress module and a probabilistic crack growth module, as well as the capabilities detailed in this 
report.  As part of the verification process, the case of two symmetric through-cracks emanating 
from a central hole in a plate subjected to remote spectrum loading, as shown in Figure 1, has been 
analysed.  This is a simplified representation of a structural component on F111 military aircraft, 
and the material is D6ac steel.  Experiments have shown that crack growth in this component is 
very slow, if at all, but analytical results using existing software do not correlate well with this 
observation.  One possible cause of the inaccuracy is the calculation of the stress intensity factor 
using the remote stress, and the current approach attempts to make improvements in this 
calculation.  Preliminary results, as shown in Figure 2, appear promising; where the solid and 
dashed lines represent, respectively, the crack growth using the current approach and the LEFM 
approach.  The current approach predicts significantly slower crack growth, as expected. 

5 CONCLUSION 
A numerical model has been developed to predict the near-notch elastic-plastic stress distribution, 
which is then implemented in a crack growth analysis program to model the crack growth in the 
notch-plasticity affected zone.  Preliminary results show an encouraging trend in terms of crack 
growth rate, in comparison with the remote stress approach.   
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Figure 1 Two symmetric through-cracks emanating 
from a hole under remote spectrum loading. 

Figure 2 Crack growth curves predicted using (1) remote 
stress approach and (2) local stress approach. 
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