35,305 research outputs found

    BME sex offenders in prison: the problem of participation in offending behaviour groupwork programmes – a tripartite model of understanding

    Get PDF
    This paper addresses the under representation of Black and minority ethnic (BME) sex offenders in the sex offender treatment programme (SOTP) of the prisons of England and Wales. The proportional over representation of BME men in the male sex offender population of the prisons of England and Wales has been noted for at least ten years. Similarly the under representation of BME sex offenders in prison treatment programmes has been a cause for concern during the last decade. This paper presents current demographic data relating to male BME sex offenders in the prisons of England and Wales. The paper draws together a wide range of social and cultural theories to develop a tripartite model for understanding the dynamics underlying the non-participation of BME sex offenders in therapy.</p

    Spherical Jeans analysis for dark matter indirect detection in dwarf spheroidal galaxies - Impact of physical parameters and triaxiality

    Full text link
    Dwarf spheroidal (dSph) galaxies are among the most promising targets for the indirect detection of dark matter (DM) from annihilation and/or decay products. Empirical estimates of their DM content - and hence the magnitudes of expected signals - rely on inferences from stellar-kinematic data. However, various kinematic analyses can give different results and it is not obvious which are most reliable. Using extensive sets of mock data of various sizes (mimicking 'ultra-faint' and 'classical' dSphs) and an MCMC engine, here we investigate biases, uncertainties, and limitations of analyses based on parametric solutions to the spherical Jeans equation. For a variety of functional forms for the tracer and DM density profiles, as well as the orbital anisotropy profile, we examine reliability of estimates for the astrophysical J- and D-factors for annihilation and decay, respectively. For large (N > 1000) stellar-kinematic samples typical of 'classical' dSphs, errors tend to be dominated by systematics, which can be reduced through the use of sufficiently general and flexible functional forms. For small (N < 100) samples typical of 'ultrafaints', statistical uncertainties tend to dominate systematic errors and flexible models are less necessary. We define an optimal strategy that would mitigate sensitivity to priors and other aspects of analyses based on the spherical Jeans equation. We also find that the assumption of spherical symmetry can bias estimates of J (with the 95% credibility intervals not encompassing the true J-factor) when the object is mildly triaxial (axis ratios b/a = 0.8, c/a = 0.6). A concluding table summarises the typical error budget and biases for the different sample sizes considered.Comment: 21 pages, 20 figures. Minor changes (several clarifications): match the MNRAS accepted versio

    A Supersymmetric Flipped SU(5) Intersecting Brane World

    Get PDF
    We construct an N=1 supersymmetric three-family flipped SU(5) model from type IIA orientifolds on T6/(Z2×Z2)T^6/(\Z_2\times \Z_2) with D6-branes intersecting at general angles. The spectrum contains a complete grand unified and electroweak Higgs sector. In addition, it contains extra exotic matter both in bi-fundamental and vector-like representations as well as two copies of matter in the symmetric representation of SU(5).Comment: 17 pages, 3 tables, v2 published in Phys.Lett.

    Evaluation of the InDUCKtion project at UCL

    Get PDF
    Executive summary: There is evidence that a good induction to university life can help with student retention; however, there is also a danger of overwhelming students during the intense period of fresher’s week. Under the auspices of a small grant from the Higher Education Academy’s ‘Changing the Learning Landscape’ funding stream, staff at two universities (University College London and Southampton Solent University) collaborated to produce an innovative and engaging induction project entitled ‘InDUCKtion’, based on the idea of an induction duck being a fun character for students to interact with. At UCL, the InDUCKtion duck existed in the form of a physical plastic duck included in international postgraduate student induction packs, and they were encouraged to take photos of themselves in and around UCL and London as part of a photo challenge using social media. It was anticipated that this would enable students to familiarise themselves with the locale, make friends and have fun at the same time. The InDUCKtion duck was also evident on flyers and posters with QR codes advertising an online tour to enable students to gain an accelerated familiarisation with the campus and its facilities. Within UCL, the project was a collaborative, cross-departmental venture instigated by members of UCL’s E-Learning Environments (ELE) working in partnership with the Centre for the Advancement of Learning and Teaching (CALT) and Student Support and Wellbeing (SSW). The logistics of the project meant that the team members also had to liaise with a number of other individuals and departments around UCL, to help promote and implement the project. Despite a rapid following on Twitter in a relatively short period, a reasonable hit rate on the QR code for the main page of the online tour resource, and some engagement with the photo challenges using social media, participation in the project was lower than anticipated. Lessons learned from an evaluation perspective revealed that adding another activity to an already overwhelming fresher’s week was problematic, despite its innovative and interactive nature. The use of QR codes was problematic for a number of reasons, and the project needed more buy-in from student representatives and academics to provide institutional endorsement. Recommendations for future instances of the project include securing student representation and academic endorsement, integrating the activity with parallel induction activities – particularly with academic departments, replacing QR codes with an alternative technology-enhanced learning approach and optimising the learning design to better motivate students and promote groupwork

    Towards Universal Topological Quantum Computation in the ν=5/2\nu=5/2 Fractional Quantum Hall State

    Full text link
    The Pfaffian state, which may describe the quantized Hall plateau observed at Landau level filling fraction ν=5/2\nu = 5/2, can support topologically-protected qubits with extremely low error rates. Braiding operations also allow perfect implementation of certain unitary transformations of these qubits. However, in the case of the Pfaffian state, this set of unitary operations is not quite sufficient for universal quantum computation (i.e. is not dense in the unitary group). If some topologically unprotected operations are also used, then the Pfaffian state supports universal quantum computation, albeit with some operations which require error correction. On the other hand, if certain topology-changing operations can be implemented, then fully topologically-protected universal quantum computation is possible. In order to accomplish this, it is necessary to measure the interference between quasiparticle trajectories which encircle other moving trajectories in a time-dependent Hall droplet geometry.Comment: A related paper, cond-mat/0512072, explains the topological issues in greater detail. It may help the reader to look at this alternate presentation if confused about any poin
    • …
    corecore