35,088 research outputs found

    The Origin of Anomalous Low-Temperature Downturns in the Thermal Conductivity of Cuprates

    Full text link
    We show that the anomalous decrease in the thermal conductivity of cuprates below 300 mK, as has been observed recently in several cuprate materials including Pr2−x_{2-x}Cex_xCuO7−ή_{7-\delta} in the field-induced normal state, is due to the thermal decoupling of phonons and electrons in the sample. Upon lowering the temperature, the phonon-electron heat transfer rate decreases and, as a result, a heat current bottleneck develops between the phonons, which can in some cases be primarily responsible for heating the sample, and the electrons. The contribution that the electrons make to the total low-TT heat current is thus limited by the phonon-electron heat transfer rate, and falls rapidly with decreasing temperature, resulting in the apparent low-TT downturn of the thermal conductivity. We obtain the temperature and magnetic field dependence of the low-TT thermal conductivity in the presence of phonon-electron thermal decoupling and find good agreement with the data in both the normal and superconducting states.Comment: 8 pages, 5 figure

    Enhanced Stability of Superheavy Nuclei due to High-Spin Isomerism

    Get PDF
    Configuration-constrained calculations of potential-energy surfaces in even-even superheavy nuclei reveal systematically the existence at low excitation energies of multi-quasiparticle states with deformed axially symmetric shapes and large angular momenta. These results indicate the prevalence of long-lived, multi-quasiparticle isomers. In a quantal system, the ground state is usually more stable than the excited states. In contrast, in superheavy nuclei the multi-qausiparticle excitations decrease the probability for both fission and α\alpha decay, implying enhanced stability. Hence, the systematic occurrence of multi-qausiparticle isomers may become crucial for future production and study of even heavier nuclei. The energies of multi-quasiparticle states and their α\alpha decays are calculated and compared to available data.Comment: 4 pages, 5 figures, accepted for publication in PR

    A Force Balance to Measure the Total Drag of Biofilms on Test Plates

    Get PDF
    A floating force balance has been designed and integrated into the working section of a to enable the measurement of total drag on test plates, which form part of the tunnel wall. Measurements completed include a calibration of the rig using a smooth acrylic plate, a smooth painted plate, and an artificially roughened plate. The painted plate and rough plate have also been studied with biofilms attached to their surface. The water tunnel and total drag rig have been built specifically to allow the detailed investigation of freshwater biofilm effects have on the flow through hydraulic conduits. Calibration results show that useful information can be obtained by using the force balance, particularly in association with other measurement techniques. Research into the effects of biofilms showsthat large increases in friction and effective roughness can be expected

    CCD Photometry of Galactic Globular Clusters. IV. The NGC 1851 RR Lyraes

    Full text link
    The variable star population of the galactic globular cluster NGC 1851 (C0512-400) has been studied by CCD photometry, from observations made in the B, V, and I bands during 1993-4. Light curves are presented for 29 variables, seven of which are new discoveries. The behavior of the RR lyraes in the period-temperature diagram appears normal when compared to clusters which bracket the NGC 1851 metallicity. Reddening and metallicity are re-evaluated, with no compelling evidence to change from accepted values. Photometry for stars within an annulus with radii 80 and 260 arcsec agrees to better than 0.02 mag in all colors with extensive earlier photometry, to at least V = 18.5. Instability strip boundary positions for several clusters shows a trend for the red boundary to move to redder colors as the metallicity increases.Comment: 29 pages, 9 figures, accepted by A.

    The distance to the LMC cluster NGC 1866 and the surrounding field

    Get PDF
    We use the Main Sequence stars in the LMC cluster NGC 1866 and of Red Clump stars in the local field to obtain two independent estimates of the LMC distance. We apply an empirical Main Sequence-fitting technique based on a large sample of subdwarfs with accurate {\sl Hipparcos} parallaxes in order to estimate the cluster distance modulus, and the multicolor Red Clump method to derive distance and reddening of the LMC field. We find that the Main Sequence-fitting and the Red Clump distance moduli are in significant disagreement; NGC 1866 distance is equal to (m−M)0,NGC1866=18.33±\rm (m-M)_{0,NGC 1866}=18.33\pm0.08 (consistent with a previous estimate using the same data and theoretical Main Sequence isochrones), while the field stars provide (m−M)0,field=18.53±\rm (m-M)_{0,field}=18.53\pm0.07. This difference reflects the more general dichotomy in the LMC distance estimates found in the literature. Various possible causes for this disagreement are explored, with particular attention paid to the still uncertain metallicity of the cluster and the star formation history of the field stars.Comment: 5 pages, incl. 1 figure, uses emulateapj.sty, ApJ accepte

    Dynamics of Low-Density Ultracold Rydberg Gases

    Full text link
    Population dynamics in weakly-excited clouds of ultracold 87^{87}Rb Rydberg atoms were studied by means of trap loss, fluorescence detection, and state dependent stimulated emission. Rydberg atoms were excited to various nl Rydberg states via continuous two-photon excitation from a magneto-optical trap. A stimulated emission probe laser was then used to bring the Rydberg atoms down to the 6P3/2_{3/2} state, allowing state-dependent detection of the Rydberg atoms. Measurements of trap loss and fluorescent emission reveal information about the evolution of the Rydberg populations. In particular, population in the initial Rydberg state quickly transfers to other Rydberg states by a non-collisional mechanism, likely superradiant emission. The trap-loss measurements are consistent with black-body ionization as the dominant loss mechanism.Comment: 9 pages, 7 figure

    Star Formation in the Northern Cloud Complex of NGC 2264

    Full text link
    We have made continuum and spectral line observations of several outflow sources in the Mon OB1 dark cloud (NGC 2264) using the Heinrich Hertz Telescope (HHT) and ARO 12m millimeter-wave telescope. This study explores the kinematics and outflow energetics of the young stellar systems observed and assesses the impact star formation is having on the surrounding cloud environment. Our data set incorporates 12CO(3-2), 13CO(3-2), and 12CO(1-0) observations of outflows associated with the sources IRAS 06382+1017 and IRAS 06381+1039, known as IRAS 25 and 27, respectively, in the northern cloud complex. Complementary 870 micron continuum maps were made with the HHT 19 channel bolometer array. Our results indicate that there is a weak (approximately less than 0.5%) coupling between outflow kinetic energy and turbulent energy of the cloud. An analysis of the energy balance in the IRAS 25 and 27 cores suggests they are maintaining their dynamical integrity except where outflowing material directly interacts with the core, such as along the outflow axes.Comment: 28 pages including 6 figures, to be published in ApJ 01 July 2006, v645, 1 issu

    The modern tools of quantum mechanics (A tutorial on quantum states, measurements, and operations)

    Full text link
    This tutorial is devoted to review the modern tools of quantum mechanics, which are suitable to describe states, measurements, and operations of realistic, not isolated, systems in interaction with their environment, and with any kind of measuring and processing devices. We underline the central role of the Born rule and and illustrate how the notion of density operator naturally emerges, together the concept of purification of a mixed state. In reexamining the postulates of standard quantum measurement theory, we investigate how they may formally generalized, going beyond the description in terms of selfadjoint operators and projective measurements, and how this leads to the introduction of generalized measurements, probability operator-valued measures (POVM) and detection operators. We then state and prove the Naimark theorem, which elucidates the connections between generalized and standard measurements and illustrates how a generalized measurement may be physically implemented. The "impossibility" of a joint measurement of two non commuting observables is revisited and its canonical implementations as a generalized measurement is described in some details. Finally, we address the basic properties, usually captured by the request of unitarity, that a map transforming quantum states into quantum states should satisfy to be physically admissible, and introduce the notion of complete positivity (CP). We then state and prove the Stinespring/Kraus-Choi-Sudarshan dilation theorem and elucidate the connections between the CP-maps description of quantum operations, together with their operator-sum representation, and the customary unitary description of quantum evolution. We also address transposition as an example of positive map which is not completely positive, and provide some examples of generalized measurements and quantum operations.Comment: Tutorial. 26 pages, 1 figure. Published in a special issue of EPJ - ST devoted to the memory of Federico Casagrand

    Comment on "Nucleon elastic form factors and local duality"

    Get PDF
    We comment on the papers "Nucleon elastic form factors and local duality" [Phys. Rev. {\bf D62}, 073008 (2000)] and "Experimental verification of quark-hadron duality" [Phys. Rev. Lett. {\bf 85}, 1186 (2000)]. Our main comment is that the reconstruction of the proton magnetic form factor, claimed to be obtained from the inelastic scaling curve thanks to parton-hadron local duality, is affected by an artifact.Comment: to appear in Phys. Rev.
    • 

    corecore