43,395 research outputs found

    CS J = 2 yields 1 emission toward the central region of M82

    Get PDF
    M82 is an irregular (Type II) galaxy located at a distance of approximately 3.5 Mpc. Its unusual appearance and high luminosity, particularly in the infrared, has led many astronomers to classify it as a starburst galaxy. This interpretation is supported by the observation of a large number of radio continuum sources within the central arcminute of the galaxy. These sources are thought to be associated with supernova remnants. The starburst in the central region of the galaxy is believed to have been triggered by tidal interaction with either M81 or the HI cloud surrounding the M81 group. High angular resolution CO-12 J=1 to 0 maps by Nakai (1984) and Lo et al. (1987) indicate the existence of a 400 to 450 pc rotating ring of molecular material about the central region of M82. Red- and blue-shifted absorption components of the HI and OH lines measured by Weliachew et al. (1984) provided the first evidence for the presence of the ring. Many astronomers, each using a different angular resolution, have compared CO-12 J=1 to 0, J=2 to 1, and J=3 to 2 emission and concluded that a large fraction of the CO emission is optically thin. Additional observations suggest that the molecular material toward the center of M82 is clumpy and dense. Unlike the lower rotational transitions of CO, CS is excited only at relatively high densities, n sub H sub 2 greater than or equal to 10(exp 4) cm(-3). It is in clouds with these densities that stars are expected to form. This makes CS an excellent probe of star formation regions. Researchers observed the CS J=2 to 1 transition (97.981 GHz) toward 52 positions in M82 using the National Radio Astronomy Observatory (NRAO) 12 m telescope

    Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone

    Get PDF
    We have applied the soluble pyridine nucleotide transhydrogenase of Pseudomonas fluorescens to a cell-free system for the regeneration of the nicotinamide cofactors NAD and NADP in the biological production of the important semisynthetic opiate drug hydromorphone. The original recombinant whole-cell system suffered from cofactor depletion resulting from the action of an NADP(+)-dependent morphine dehydrogenase and an NADH-dependent morphinone reductase. By applying a soluble pyridine nucleotide transhydrogenase, which can transfer reducing equivalents between NAD and NADP, we demonstrate with a cell-free system that efficient cofactor cycling in the presence of catalytic amounts of cofactors occurs, resulting in high yields of hydromorphone. The ratio of morphine dehydrogenase, morphinone reductase, and soluble pyridine nucleotide transhydrogenase is critical for diminishing the production of the unwanted by-product dihydromorphine and for optimum hydromorphone yields. Application of the soluble pyridine nucleotide transhydrogenase to the whole-cell system resulted in an improved biocatalyst with an extended lifetime. These results demonstrate the usefulness of the soluble pyridine nucleotide transhydrogenase and its wider application as a tool in metabolic engineering and biocatalysis

    Study protocol for a randomised controlled trial of electronic cigarettes versus nicotine patch for smoking cessation

    Get PDF
    PMCID: PMC3602285This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    A peer-to-peer infrastructure for resilient web services

    Get PDF
    This work is funded by GR/M78403 “Supporting Internet Computation in Arbitrary Geographical Locations” and GR/R51872 “Reflective Application Framework for Distributed Architectures”, and by Nuffield Grant URB/01597/G “Peer-to-Peer Infrastructure for Autonomic Storage Architectures”This paper describes an infrastructure for the deployment and use of Web Services that are resilient to the failure of the nodes that host those services. The infrastructure presents a single interface that provides mechanisms for users to publish services and to find hosted services. The infrastructure supports the autonomic deployment of services and the brokerage of hosts on which services may be deployed. Once deployed, services are autonomically managed in a number of aspects including load balancing, availability, failure detection and recovery, and lifetime management. Services are published and deployed with associated metadata describing the service type. This same metadata may be used subsequently by interested parties to discover services. The infrastructure uses peer-to-peer (P2P) overlay technologies to abstract over the underlying network to deploy and locate instances of those services. It takes advantage of the P2P network to replicate directory services used to locate service instances (for using a service), Service Hosts (for deployment of services) and Autonomic Managers which manage the deployed services. The P2P overlay network is itself constructed using novel Web Services-based middleware and a variation of the Chord P2P protocol, which is self-managing.Postprin

    Oxidative Heck desymmetrisation of 2,2-disubstituted cyclopentene-1,3-diones

    Get PDF
    Oxidative Heck couplings have been successfully developed for 2,2-disubstituted cyclopentene-1,3-diones. The direct coupling onto the 2,2-disubstituted cyclopentene-1,3-dione core provides a novel expedient way of enantioselectively desymmetrising all-carbon quaternary centres

    Growth of Epitaxial Oxide Thin Films on Graphene

    Get PDF
    The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridgepillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices

    Spin resonance in the superconducting state of Li1x_{1-x}Fex_{x}ODFe1y_{1-y}Se observed by neutron spectroscopy

    Full text link
    We have performed inelastic neutron scattering measurements on a powder sample of the superconductor lithium iron selenide hydroxide Li1x_{1-x}Fex_{x}ODFe1y_{1-y}Se (x0.16,y0.02x \simeq 0.16, y \simeq 0.02, Tc=41T_{\rm c} = 41\,K). The spectrum shows an enhanced intensity below TcT_{\rm c} over an energy range 0.64×2Δ<E<2Δ0.64\times2\Delta < E < 2\Delta, where Δ\Delta is the superconducting gap, with maxima at the wave vectors Q11.46Q_1 \simeq 1.46\,\AA1^{-1} and Q21.97Q_2 \simeq 1.97\,\AA1^{-1}. The behavior of this feature is consistent with the spin resonance mode found in other unconventional superconductors, and strongly resembles the spin resonance observed in the spectrum of the molecular-intercalated iron selenide, Li0.6_{0.6}(ND2_{2})0.2_{0.2}(ND3_{3})0.8_{0.8}Fe2_{2}Se2_{2}. The signal can be described with a characteristic two-dimensional wave vector (π,0.67π)(\pi, 0.67\pi) in the Brillouin zone of the iron square lattice, consistent with the nesting vector between electron Fermi sheets
    corecore