218 research outputs found

    Sensing Behavior of Galfenol (FeGa) Alloys under Dynamic Conditions

    Get PDF
    Magnetostrictive materials are a class of smart materials that have the capability to convert mechanical energy to magnetic energy and vice versa. This material property makes these materials ideal for both sensing and actuation applications. Utilizing a customized part composed of only one material, rather than various components working together, would lessen the effect of wear and degradation in addition to allowing the customized part to be much smaller than current counterparts. These devices can be self contained, and in some cases can be used as self-sensing actuators. Galfenol, an alloy of iron and gallium, is a promising material for such application due to the moderate strain exhibited under a magnetic field combined with the material's mechanical robustness.This research looks to further the study of Galfenol by documenting the behavior of (Fe81.6Ga18.4) Galfenol in the dynamic (time-varying) regime in relation to sensing applications. The characterization of these alloys involves applying a dynamic stress to the sample and measuring the corresponding change in magnetization level. Using an array of different probes and sensors these results have been obtained for different frequencies of stress excitation. The relationship between the input stress and the output magnetization is non-linear and exhibits hysteresis. The characterization of these responses aids in the creation of guidelines for implementing Galfenol in a sensing or actuating system.No embarg

    Effects of Medium Components on the Bulk Rheology and on the Formation of Ferning Patterns for Biofilm of <em>Pseudomonas aeruginosa</em>

    Get PDF
    Pseudomonas aeruginosa virulence and success within a broad range of hosts are largely due to the strength of its biofilms. The rheology of biofilm of P. aeruginosa was measured to investigate the bacterial response to nutritional conditions (medium that was modified with glycerol, glucose, sucrose, sodium chloride, and silver nitrate). The elastic modulus and the yield stress of the biofilm of P. aeruginosa increased in response to increases in glycerol, glucose, and sodium chloride. Alternatively, silver nitrate and glycerol inhibited biofilm formation at concentrations that were greater than 0.1 mM and 10 v/v%, respectively. Ferning patterns form as a result of diffusion-limited desiccation of the salt-macromolecule solution. Ferning coverage of about 50% and an orthogonal ferning pattern with 3° of branching were found for most of the biofilm samples. The complexity increased with modifications that caused strengthening of the biofilm, while the coverage and complexity dropped to zero when no biofilm growth was observed. The birefringent bundles of liquid crystals in the biofilm gained a new level of complexity and order within the ferning pattern that correlates with the biofilm robustness as characterized by its rheology, and these properties are heavily influenced by the nutritional environment of P. aeruginosa

    Lessons for Asteroseismology from White Dwarf Stars

    Full text link
    The interpretation of pulsation data for Sun-like stars is currently facing challenges quite similar to those faced by white dwarf modelers ten years ago. The observational requirements for uninterrupted long-term monitoring are beginning to be satisfied by successful multi-site campaigns and dedicated satellite missions. But exploration of the most important physical parameters in theoretical models has been fairly limited, making it difficult to establish a detailed best-fit model for a particular set of oscillation frequencies. I review the past development and the current state of white dwarf asteroseismology, with an emphasis on what this can tell us about the road to success for asteroseismology of other types of stars.Comment: 10 pgs, 4 figs, Internat'l Workshop on Asteroseismology (Nainital

    Singing the same tune? International continuities and discontinuities in how police talk about using force

    Full text link
    This article focuses on a research project conducted in six jurisdictions: England, The Netherlands, Germany, Australia, Venezuela, and Brazil. These societies are very different ethnically, socially, politically, economically, historically and have wildly different levels of crime. Their policing arrangements also differ significantly: how they are organised; how their officers are equipped and trained; what routine operating procedures they employ; whether they are armed; and much else besides. Most relevant for this research, they represent policing systems with wildly different levels of police shootings, Police in the two Latin American countries represented here have a justified reputation for the frequency with which they shoot people, whereas at the other extreme the police in England do not routinely carry firearms and rarely shoot anyone. To probe whether these differences are reflected in the way that officers talk about the use of force, police officers in these different jurisdictions were invited to discuss in focus groups a scenario in which police are thwarted in their attempt to arrest two youths (one of whom is a known local criminal) by the youths driving off with the police in pursuit, and concludes with the youths crashing their car and escaping in apparent possession of a gun, It might be expected that focus groups would prove starkly different, and indeed they were, but not in the way that might be expected. There was little difference in affirmation of normative and legal standards regarding the use of force. It was in how officers in different jurisdictions envisaged the circumstances in which the scenario took place that led Latin American officers to anticipate that they would shoot the suspects, whereas officers in the other jurisdictions had little expectation that they would open fire in the conditions as they imagined them to be

    Ecosystem resilience despite large-scale altered hydroclimatic conditions

    Full text link
    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological model for many regions. Large-scale, warm droughts have recently occurred in North America, Africa, Europe, Amazonia and Australia, resulting in major effects on terrestrial ecosystems, carbon balance and food security. Here we compare the functional response of above-ground net primary production to contrasting hydroclimatic periods in the late twentieth century (1975-1998), and drier, warmer conditions in the early twenty-first century (2000-2009) in the Northern and Southern Hemispheres. We find a common ecosystem water-use efficiency (WUE e: Above-ground net primary production/ evapotranspiration) across biomes ranging from grassland to forest that indicates an intrinsic system sensitivity to water availability across rainfall regimes, regardless of hydroclimatic conditions. We found higher WUE e in drier years that increased significantly with drought to a maximum WUE e across all biomes; and a minimum native state in wetter years that was common across hydroclimatic periods. This indicates biome-scale resilience to the interannual variability associated with the early twenty-first century drought - that is, the capacity to tolerate low, annual precipitation and to respond to subsequent periods of favourable water balance. These findings provide a conceptual model of ecosystem properties at the decadal scale applicable to the widespread altered hydroclimatic conditions that are predicted for later this century. Understanding the hydroclimatic threshold that will break down ecosystem resilience and alter maximum WUE e may allow us to predict land-surface consequences as large regions become more arid, starting with water-limited, low-productivity grasslands. © 2013 Macmillan Publishers Limited. All rights reserved

    Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years

    Get PDF
    Background: The erosion of the early mortality advantage of elective endovascular aneurysm repair (EVAR) compared with open repair of abdominal aortic aneurysm remains without a satisfactory explanation. Methods: An individual-patient data meta-analysis of four multicentre randomized trials of EVAR versus open repair was conducted to a prespecified analysis plan, reporting on mortality, aneurysm-related mortality and reintervention. Results: The analysis included 2783 patients, with 14 245 person-years of follow-up (median 5·5 years). Early (0–6 months after randomization) mortality was lower in the EVAR groups (46 of 1393 versus 73 of 1390 deaths; pooled hazard ratio 0·61, 95 per cent c.i. 0·42 to 0·89; P = 0·010), primarily because 30-day operative mortality was lower in the EVAR groups (16 deaths versus 40 for open repair; pooled odds ratio 0·40, 95 per cent c.i. 0·22 to 0·74). Later (within 3 years) the survival curves converged, remaining converged to 8 years. Beyond 3 years, aneurysm-related mortality was significantly higher in the EVAR groups (19 deaths versus 3 for open repair; pooled hazard ratio 5·16, 1·49 to 17·89; P = 0·010). Patients with moderate renal dysfunction or previous coronary artery disease had no early survival advantage under EVAR. Those with peripheral artery disease had lower mortality under open repair (39 deaths versus 62 for EVAR; P = 0·022) in the period from 6 months to 4 years after randomization. Conclusion: The early survival advantage in the EVAR group, and its subsequent erosion, were confirmed. Over 5 years, patients of marginal fitness had no early survival advantage from EVAR compared with open repair. Aneurysm-related mortality and patients with low ankle : brachial pressure index contributed to the erosion of the early survival advantage for the EVAR group. Trial registration numbers: EVAR-1, ISRCTN55703451; DREAM (Dutch Randomized Endovascular Aneurysm Management), NCT00421330; ACE (Anévrysme de l'aorte abdominale, Chirurgie versus Endoprothèse), NCT00224718; OVER (Open Versus Endovascular Repair Trial for Abdominal Aortic Aneurysms), NCT00094575

    Genome modeling system: A knowledge management platform for genomics

    Get PDF
    In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms

    The National Criticality Experiments Research Center and its role in support of advanced reactor design

    Get PDF
    The National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS) in the Device Assembly Facility (DAF) and operated by Los Alamos National Laboratory (LANL) is the only general purpose critical experiments facility in the United States. Experiments from subcritical to critical and above prompt critical are carried out at NCERC on a regular basis. In recent years, NCERC has become more involved in experiments related to nuclear energy, including the Kilopower/KRUSTY demonstration and the recent Hypatia experiment. Multiple nuclear energy related projects are currently ongoing at NCERC. This paper discusses NCERC’s role in advanced reactor design and how that role may change in the future
    corecore