1,440 research outputs found

    The future of bioethanol

    Get PDF
    Yeasts have been domesticated by mankind before horses. After the mastering of alcoholic fermentation for centuries, yeasts have become the protagonist of one of the most important biotechnological industries worldwide: the production of bioethanol. This chapter will initially present some important challenges to be overcome in this industry, both in first and second generation biofuel production. Then, it will briefly revisit some advances obtained in recent years. Finally, it will present and discuss some opportunities, in the scope of metabolic engineering and synthetic biology, that will likely be present in the future of bioethanol

    Antigen-dependent Proliferation of CD4+ CD25+ Regulatory T Cells In Vivo

    Get PDF
    The failure of CD25+ regulatory T cells (Tregs) to proliferate after T cell receptor (TCR) stimulation in vitro has lead to their classification as naturally anergic. Here we use Tregs expressing a transgenic TCR to show that despite anergy in vitro, Tregs proliferate in response to immunization in vivo. Tregs also proliferate and accumulate locally in response to transgenically expressed tissue antigen whereas their CD25− counterparts are depleted at such sites. Collectively, these data suggest that the anergic state that characterizes CD25+ Tregs in vitro may not accurately reflect their responsiveness in vivo. These observations support a model in which Treg population dynamics are shaped by the local antigenic environment

    Interactive three-dimensional boundary element stress analysis of components in aircraft structures

    Get PDF
    Computer aided design of mechanical components is an iterative process that often involves multiple stress analysis runs; this can be time consuming and expensive. Significant efficiency improvements can be made by increasing interactivity at the conceptual design stage. One approach is through real-time re-analysis of models with continuously updating geometry. Thus each run can benefit from an existing mesh and governing boundary element matrix that are similar to the updated geometry. For small problems, amenable to real-time analysis, re-integration accounts for the majority of the re-analysis time. This paper assesses how efficiency can be achieved during re-integration through both algorithmic and hardware based methods. For models with fewer than 10,000 degrees of freedom, the proposed algorithm performs up to five times faster than a standard integration scheme. An additional six times speed is achieved on eight cores over the serial implementation. By combining this work with previously addressed meshing and solution schemes, real-time re-analysis becomes a reality for small three-dimensional problems. Significant acceleration of larger systems is also achieved. This work demonstrates the viability of application in the aerospace industry where rapid validation of a range of similar models is an essential tool for optimising aircraft designs

    Cooperative Roles of CTLA-4 and Regulatory T Cells in Tolerance to an Islet Cell Antigen

    Get PDF
    Adoptive transfer of ovalbumin (OVA)-specific T cells from the DO.11 TCR transgenic mouse on a Rag−/− background into mice expressing OVA in pancreatic islet cells induces acute insulitis and diabetes only if endogenous lymphocytes, including regulatory T cells, are removed. When wild-type OVA-specific/Rag−/− T cells, which are all CD25−, are transferred into islet antigen–expressing mice, peripheral immunization with OVA in adjuvant is needed to induce diabetes. In contrast, naive CTLA-4−/−/Rag−/− OVA-specific T cells (also CD25−) develop into Th1 effectors and induce disease upon recognition of the self-antigen alone. These results suggest that CTLA-4 functions to increase the activation threshold of autoreactive T cells, because in its absence self-antigen is sufficient to trigger autoimmunity without peripheral immunization. Further, CTLA-4 and regulatory T cells act cooperatively to maintain tolerance, indicating that the function of CTLA-4 is independent of regulatory cells, and deficiency of both is required to induce pathologic immune responses against the islet self-antigen

    Lockin to Weak Ferromagnetism in TbNi2B2C and ErNi2B2C

    Full text link
    This article describes a model in which ferromagnetism necessarily accompanies a spin-density-wave lockin transition in the borocarbide structure provided the commensurate phase wave vector satisfies Q = (m/n)a* with m even and n odd. The results account for the magnetic properties of TbNi2B2C, and are also possibly relevant also for those of ErNi2B2C.Comment: 4 page

    Role of a SER immune suppressor in immune surveillance

    Get PDF
    A potent immunosuppressor factor, known as SER (suppressive E-receptor factor) has been identified in the body fluids of cancer patients. SER has been proven to be immunochemically analogous to the fetal form of haptoglobin. In this paper, we examine the role of SER immune suppressor in the immune surveillance mechanism of the host, using an affinity-purified SER. As shown in this study, SER, at μg/ml concentrations, inhibits the T-cell proliferation induced with either monoclonal or polyclonal T-cell activators in vitro in human, and also inhibits the primary antibody response to T-dependent antigens in vivo in mice. Likewise, SER also inhibits the immunoglobulin synthesis of human B lymphocytes induced by a B-cell mitogen, pokeweed mitogen, in the presence of a tumour promotor, phorbol myristate acetate (PMA). In contrast to the T-dependent antibody response in vivo in mice or T-dependent mitogen response in vitro in human, SER does not interfere with the T-independent antibody responses to DNP-Ficoll or TNP-LPS in mice. SER also interferes with the natural killer cell function of human peripheral blood mononuclear cells. Although SER inhibits the phagocytic functions of human peripheral neutrophils, it requires at least 10-20 times the concentration of SER present in normal human plasma. Since this concentration of SER is attainable in the sera of solid tumour-bearing patients, highly elevated levels of SER could predispose the patients to microbial infections as well. This study demonstrates that purified SER manifests multi-faceted down-regulatory effects on the defence mechanism of hosts, thereby it could compromise the patients' cell-mediated immunity in vivo

    Bulk Scale Factor at Very Early Universe

    Full text link
    In this paper we propose a higher dimensional Cosmology based on FRW model and brane-world scenario. We consider the warp factor in the brane-world scenario as a scale factor in 5-dimensional generalized FRW metric, which is called as bulk scale factor, and obtain the evolution of it with space-like and time-like extra dimensions. It is then showed that, additional space-like dimensions can produce exponentially bulk scale factor under repulsive strong gravitational force in the empty universe at a very early stage.Comment: 7 pages, October 201

    Cost-effectiveness analysis of new generation coronary CT scanners for difficult-to-image patients

    Get PDF
    Aims: New generation dual-source coronary CT (NGCCT) scanners with more than 64 slices were evaluated for patients with (known) or suspected of coronary artery disease (CAD) who are difficult to image: obese, coronary calcium score > 400, arrhythmias, previous revascularization, heart rate > 65 beats per minute, and intolerance of betablocker. A cost-effectiveness analysis of NGCCT compared with invasive coronary angiography (ICA) was performed for these difficult-to-image patients for England and Wales. Methods and results: Five models (diagnostic decision model, four Markov models for CAD progression, stroke, radiation and general population) were integrated to estimate the cost-effectiveness of NGCCT for both suspected and known CAD populations. The lifetime costs and effects from the National Health Service perspective were estimated for three strategies: (1) patients diagnosed using ICA, (2) using NGCCT, and (3) patients diagnosed using a combination of NGCCT and, if positive, followed by ICA. In the suspected population, the strategy where patients only undergo a NGCCT is a cost-effective option at accepted cost-effectiveness thresholds. The strategy of using NGCCT in combination with ICA is the most favourable strategy for patients with known CAD. The most influential factors behind these results are the percentage of patients being misclassified (a function of both diagnostic accuracy and the prior likelihood), the complication rates of the procedures, and the cost price of a NGCCT scan. Conclusion: The use of NGCCT might be considered cost-effective in both populations since it is cost-saving compared to ICA and generates similar effects

    Friedmann-like equations for High Energy Area of Universe

    Full text link
    In this paper, evolution of the high energy area of universe, through the scenario of 5 dimensional (5D) universe, has been studied. For this purpose, we solve Einstein equations for 5D metric and 5D perfect fuid to derive Friedmann-like equations. Then we obtain the evolution of scale factor and energy density with respect to both space-like and time-like extra dimensions. We obtain the novel equations for the space-like extra dimension and show that the matter with zero pressure cannot exist in the bulk. Also, for dark energy fuid and vacuum fluid, we have both accelerated expansion and contraction in the bulk.Comment: 9 pages, Accepted to publication in IJTP 26 June 2012. arXiv admin note: substantial text overlap with arXiv:1202.497

    Spin-Polarized Transport Across an La0.7_{0.7}Sr0.3_{0.3}MnO3_{3}/YBa2_{2}Cu3_{3}O7_{7} Interface: Role of Andreev Bound States

    Full text link
    Transport across an La0.7_{0.7}Sr0.3MnO_{0.3}MnO_{3}/YBa2Cu_{2}Cu_{3}OO_{7}(LSMO/YBCO),interfaceisstudiedasafunctionoftemperatureandsurfacemorphology.Forcomparison,controlmeasurementsareperformedinnon−magneticheterostructuresofLaNiO(LSMO/YBCO), interface is studied as a function of temperature and surface morphology. For comparison, control measurements are performed in non-magnetic heterostructures of LaNiO_{3}$/YBCO and Ag/YBCO. In all cases, YBCO is used as bottom layer to eliminate the channel resistance and to minimize thermal effects. The observed differential conductance re ects the role of Andreev bound states in a-b planes, and brings out for the first time the suppression of such states by the spin-polarized transport across the interface. The theoretical analysis of the measured data reveals decay of the spin polarization near the LSMO surface with temperature, consistent with the reported photoemission data.Comment: 5 pages LaTeX, 3 eps figures included, accepted by Physical Review
    • …
    corecore