437 research outputs found

    Workforce Investment Act services: Effect on Dislocated Worker Reemployment

    Get PDF
    The effect of WIA services on the gainful reemployment of Virginia\u27s dislocated workers was explored using a mixed method, non-experimental, ex post factoresearch design. Analysis of variance with follow-up post hoc tests probed for statistically significant differences in hourly reemployed wage and weeks dislocated determined by (a) WIA service level, (b) impact of training, (c) characteristics of training completers and non-completers, and (d) impact of dislocated worker characteristics. Qualitative methods were used to search for trends and patterns defined by the perceptions of both dislocated workers and employers. Between 2000 and 2004, Virginia\u27s dislocated workers averaged 1.5 years of unemployment. However, reemployment was significantly affected by short-term training resulting not only in fewer weeks without a job but also in slightly higher hourly wages. In most ethnic groups, males earned higher wages than females and obtained reemployment in fewer weeks. Dislocated workers perceived WIA service and training programs to be beneficial. Employers appreciated the benefits of WIA partnerships and utilized WIA services in identifying potential workers, testing, and funding training activities. Overall, WIA services to both dislocated workers and employers were valued

    Determining Extension\u27s Role in Controversial Issues: Content, Process, Neither, or Both?

    Get PDF
    Controversial issues offer Extension faculty opportunities to facilitate community dialogue and apply conflict resolution strategies to help communities achieve higher ground. Handled appropriately, the long-term benefits to the community, the Extension organization, and the faculty member of facilitating public issues outweigh the costs. This article explores Extension\u27s place in facilitating public issues dialogue and provides an initial first step in the decision-making process regarding what Extension\u27s role should be. An approach is proposed that can help faculty decide whether to respond to an issue with content, process, or a more comprehensive approac

    Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection

    Get PDF
    Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times

    A Simple Engineering Analysis of Solar Particle Event High Energy Tails and Their Impact on Vehicle Design

    Get PDF
    The mathematical models for Solar Particle Event (SPE) high energy tails are constructed with several di erent algorithms. Since limited measured data exist above energies around 400 MeV, this paper arbitrarily de nes the high energy tail as any proton with an energy above 400 MeV. In order to better understand the importance of accurately modeling the high energy tail for SPE spectra, the contribution to astronaut whole body e ective dose equivalent of the high energy portions of three di erent SPE models has been evaluated. To ensure completeness of this analysis, simple and complex geometries were used. This analysis showed that the high energy tail of certain SPEs can be relevant to astronaut exposure and hence safety. Therefore, models of high energy tails for SPEs should be well analyzed and based on data if possible

    A Rat Body Phantom for Radiation Analysis

    Get PDF
    To reduce the uncertainties associated with estimating the biological effects of ionizing radiation in tissue, researchers rely on laboratory experiments in which mono-energetic, single specie beams are applied to cell cultures, insects, and small animals. To estimate the radiation effects on astronauts in deep space or low Earth orbit, who are exposed to mixed field broad spectrum radiation, these experimental results are extrapolated and combined with other data to produce radiation quality factors, radiation weighting factors, and other risk related quantities for humans. One way to reduce the uncertainty associated with such extrapolations is to utilize analysis tools that are applicable to both laboratory and space environments. The use of physical and computational body phantoms to predict radiation exposure and its effects is well established and a wide range of human and non-human phantoms are in use today. In this paper, a computational rat phantom is presented, as well as a description of the process through which that phantom has been coupled to existing radiation analysis tools. Sample results are presented for two space radiation environments

    Investigating Material Approximations in Spacecraft Radiation Analysis

    Get PDF
    During the design process, the configuration of space vehicles and habitats changes frequently and the merits of design changes must be evaluated. Methods for rapidly assessing astronaut exposure are therefore required. Typically, approximations are made to simplify the geometry and speed up the evaluation of each design. In this work, the error associated with two common approximations used to simplify space radiation vehicle analyses, scaling into equivalent materials and material reordering, are investigated. Over thirty materials commonly found in spacesuits, vehicles, and human bodies are considered. Each material is placed in a material group (aluminum, polyethylene, or tissue), and the error associated with scaling and reordering was quantified for each material. Of the scaling methods investigated, range scaling is shown to be the superior method, especially for shields less than 30 g/cm2 exposed to a solar particle event. More complicated, realistic slabs are examined to quantify the separate and combined effects of using equivalent materials and reordering. The error associated with material reordering is shown to be at least comparable to, if not greater than, the error associated with range scaling. In general, scaling and reordering errors were found to grow with the difference between the average nuclear charge of the actual material and average nuclear charge of the equivalent material. Based on this result, a different set of equivalent materials (titanium, aluminum, and tissue) are substituted for the commonly used aluminum, polyethylene, and tissue. The realistic cases are scaled and reordered using the new equivalent materials, and the reduced error is shown

    Radiation Exposure Analyses Supporting the Development of Solar Particle Event Shielding Technologies

    Get PDF
    NASA has plans for long duration missions beyond low Earth orbit (LEO). Outside of LEO, large solar particle events (SPEs), which occur sporadically, can deliver a very large dose in a short amount of time. The relatively low proton energies make SPE shielding practical, and the possibility of the occurrence of a large event drives the need for SPE shielding for all deep space missions. The Advanced Exploration Systems (AES) RadWorks Storm Shelter Team was charged with developing minimal mass SPE storm shelter concepts for missions beyond LEO. The concepts developed included "wearable" shields, shelters that could be deployed at the onset of an event, and augmentations to the crew quarters. The radiation transport codes, human body models, and vehicle geometry tools contained in the On-Line Tool for the Assessment of Radiation In Space (OLTARIS) were used to evaluate the protection provided by each concept within a realistic space habitat and provide the concept designers with shield thickness requirements. Several different SPE models were utilized to examine the dependence of the shield requirements on the event spectrum. This paper describes the radiation analysis methods and the results of these analyses for several of the shielding concepts

    An Improved Neutron Transport Algorithm for HZETRN

    Get PDF
    Long term human presence in space requires the inclusion of radiation constraints in mission planning and the design of shielding materials, structures, and vehicles. In this paper, the numerical error associated with energy discretization in HZETRN is addressed. An inadequate numerical integration scheme in the transport algorithm is shown to produce large errors in the low energy portion of the neutron and light ion fluence spectra. It is further shown that the errors result from the narrow energy domain of the neutron elastic cross section spectral distributions, and that an extremely fine energy grid is required to resolve the problem under the current formulation. Two numerical methods are developed to provide adequate resolution in the energy domain and more accurately resolve the neutron elastic interactions. Convergence testing is completed by running the code for various environments and shielding materials with various energy grids to ensure stability of the newly implemented method

    Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    Get PDF
    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field
    • …
    corecore