109 research outputs found

    A case of elbow hyperextension leading to complete brachial artery rupture

    Get PDF
    BACKGROUND: To our knowledge there are no cases in the literature of traumatic vascular injury of the brachial artery by elbow hyperextension without elbow dislocation based on either clinical or radiological evidence. CASE PRESENTATION: We present the first case of complete brachial artery rupture resulting from a hyperextension injury to an elbow, without dislocation. The history, early assessment and operative treatment with figures are presented. CONCLUSION: We advocate prompt clinical assessment by orthopaedic and vascular teams and early surgical exploration and repair

    Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-alpha

    Get PDF
    Previously, we developed a 3-dimensional cell culture model of human tuberculosis (TB) and demonstrated its potential to interrogate the host-pathogen interaction (Tezera et al., 2017a). Here, we use the model to investigate mechanisms whereby immune checkpoint therapy for cancer paradoxically activates TB infection. In patients, PD-1 is expressed in Mycobacterium tuberculosis (Mtb)-infected lung tissue but is absent in areas of immunopathology. In the microsphere model, PD-1 ligands are up-regulated by infection, and the PD-1/PD-L1 axis is further induced by hypoxia. Inhibition of PD-1 signalling increases Mtb growth, and augments cytokine secretion. TNF-a is responsible for accelerated Mtb growth, and TNF-a neutralisation reverses augmented Mtb growth caused by anti-PD-1 treatment. In human TB, pulmonary TNF-a immunoreactivity is increased and circulating PD-1 expression negatively correlates with sputum TNF-a concentrations. Together, our findings demonstrate that PD-1 regulates the immune response in TB, and inhibition of PD-1 accelerates Mtb growth via excessive TNF-a secretion.</p

    Slow progression of pediatric HIV associates with early CD8+ T cell PD-1 expression and a stem-like phenotype

    Get PDF
    HIV non-progression despite persistent viraemia is rare among antiretroviral therapy (ART)-naïve adults, but relatively common among ART-naïve children. Previous studies indicate that ART-naïve paediatric slow-progressors (PSPs) adopt immune evasion strategies similar to those described in the SIV natural hosts. However, the mechanisms underlying this immunophenotype are not well understood. In a cohort of early-treated infants who underwent analytical treatment interruption (ATI) after 12 months of ART, expression of PD-1 on CD8+ T-cells immediately prior to ATI was the main predictor of slow progression during ATI (r=0.77, p=0.002). PD-1+ CD8+ T-cell frequency was also negatively correlated with CCR5 (r=-0.74, p=0.005) and HLA-DR (r=-0.63, p=0.02) expression on CD4+ T-cells and predicted stronger HIV-specific T-lymphocyte responses. In the CD8+ T-cell compartment of PSPs, we identified an enrichment of stem-like TCF-1+PD-1+ memory cells, whereas paediatric progressors and viraemic adults were populated with a terminally exhausted PD-1+CD39+ population. TCF-1+PD-1+ expression on CD8+ T-cells was associated with higher proliferative activity (r=0.41, p=0.03) and stronger Gag-specific effector functionality. These data prompt the hypothesis that the proliferative burst potential of stem-like HIV-specific cytotoxic cells could be exploited in therapeutic strategies to boost the antiviral response and facilitate remission in early-ART-treated infants with a preserved and non-exhausted T-cell compartment

    Increased Skeletal Muscle 11bHSD1 mRNA Is Associated with Lower Muscle Strength in Ageing

    Get PDF
    Abstract Background: Sarcopenia, the loss of muscle mass and function with age, is associated with increased morbidity and mortality. Current understanding of the underlying mechanisms is limited. Glucocorticoids (GC) in excess cause muscle weakness and atrophy. We hypothesized that GC may contribute to sarcopenia through elevated circulating levels or increased glucocorticoid receptor (GR) signaling by increased expression of either GR or the GC-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11bHSD1) in muscle

    Slow progression of pediatric HIV associates with early CD8 + T cell PD-1 expression and a stem-like phenotype

    Get PDF
    HIV nonprogression despite persistent viremia is rare among adults who are naive to antiretroviral therapy (ART) but relatively common among ART-naive children. Previous studies indicate that ART-naive pediatric slow progressors (PSPs) adopt immune evasion strategies similar to those described in natural hosts of SIV. However, the mechanisms underlying this immunophenotype are not well understood. In a cohort of early-treated infants who underwent analytical treatment interruption (ATI) after 12 months of ART, expression of PD-1 on CD8 + T cells immediately before ATI was the main predictor of slow progression during ATI. PD-1 + CD8 + T cell frequency was also negatively correlated with CCR5 and HLA-DR expression on CD4 + T cells and predicted stronger HIV-specific T lymphocyte responses. In the CD8 + T cell compartment of PSPs, we identified an enrichment of stem-like TCF-1 + PD-1 + memory cells, whereas pediatric progressors and viremic adults had a terminally exhausted PD-1 + CD39 + population. TCF-1 + PD-1 + expression on CD8 + T cells was associated with higher proliferative activity and stronger Gag-specific effector functionality. These data prompted the hypothesis that the proliferative burst potential of stem-like HIV-specific cytotoxic cells could be exploited in therapeutic strategies to boost the antiviral response and facilitate remission in infants who received early ART with a preserved and nonexhausted T cell compartment

    High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial.

    Get PDF
    BACKGROUND: High-sensitivity cardiac troponin assays permit use of lower thresholds for the diagnosis of myocardial infarction, but whether this improves clinical outcomes is unknown. We aimed to determine whether the introduction of a high-sensitivity cardiac troponin I (hs-cTnI) assay with a sex-specific 99th centile diagnostic threshold would reduce subsequent myocardial infarction or cardiovascular death in patients with suspected acute coronary syndrome. METHODS: In this stepped-wedge, cluster-randomised controlled trial across ten secondary or tertiary care hospitals in Scotland, we evaluated the implementation of an hs-cTnI assay in consecutive patients who had been admitted to the hospitals' emergency departments with suspected acute coronary syndrome. Patients were eligible for inclusion if they presented with suspected acute coronary syndrome and had paired cardiac troponin measurements from the standard care and trial assays. During a validation phase of 6-12 months, results from the hs-cTnI assay were concealed from the attending clinician, and a contemporary cardiac troponin I (cTnI) assay was used to guide care. Hospitals were randomly allocated to early (n=5 hospitals) or late (n=5 hospitals) implementation, in which the high-sensitivity assay and sex-specific 99th centile diagnostic threshold was introduced immediately after the 6-month validation phase or was deferred for a further 6 months. Patients reclassified by the high-sensitivity assay were defined as those with an increased hs-cTnI concentration in whom cTnI concentrations were below the diagnostic threshold on the contemporary assay. The primary outcome was subsequent myocardial infarction or death from cardiovascular causes at 1 year after initial presentation. Outcomes were compared in patients reclassified by the high-sensitivity assay before and after its implementation by use of an adjusted generalised linear mixed model. This trial is registered with ClinicalTrials.gov, number NCT01852123. FINDINGS: Between June 10, 2013, and March 3, 2016, we enrolled 48 282 consecutive patients (61 [SD 17] years, 47% women) of whom 10 360 (21%) patients had cTnI concentrations greater than those of the 99th centile of the normal range of values, who were identified by the contemporary assay or the high-sensitivity assay. The high-sensitivity assay reclassified 1771 (17%) of 10 360 patients with myocardial injury or infarction who were not identified by the contemporary assay. In those reclassified, subsequent myocardial infarction or cardiovascular death within 1 year occurred in 105 (15%) of 720 patients in the validation phase and 131 (12%) of 1051 patients in the implementation phase (adjusted odds ratio for implementation vs validation phase 1·10, 95% CI 0·75 to 1·61; p=0·620). INTERPRETATION: Use of a high-sensitivity assay prompted reclassification of 1771 (17%) of 10 360 patients with myocardial injury or infarction, but was not associated with a lower subsequent incidence of myocardial infarction or cardiovascular death at 1 year. Our findings question whether the diagnostic threshold for myocardial infarction should be based on the 99th centile derived from a normal reference population. FUNDING: The British Heart Foundation

    Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes

    Get PDF
    Illumina sequencing allows rapid, cheap and accurate whole genome bacterial analyses, but short reads (<300 bp) do not usually enable complete genome assembly. Long-read sequencing greatly assists with resolving complex bacterial genomes, particularly when combined with short-read Illumina data (hybrid assembly). However, it is not clear how different long-read sequencing methods affect hybrid assembly accuracy. Relative automation of the assembly process is also crucial to facilitating high-throughput complete bacterial genome reconstruction, avoiding multiple bespoke filtering and data manipulation steps. In this study, we compared hybrid assemblies for 20 bacterial isolates, including two reference strains, using Illumina sequencing and long reads from either Oxford Nanopore Technologies (ONT) or SMRT Pacific Biosciences (PacBio) sequencing platforms. We chose isolates from the family Enterobacteriaceae, as these frequently have highly plastic, repetitive genetic structures, and complete genome reconstruction for these species is relevant for a precise understanding of the epidemiology of antimicrobial resistance. We de novo assembled genomes using the hybrid assembler Unicycler and compared different read processing strategies, as well as comparing to long-read-only assembly with Flye followed by short-read polishing with Pilon. Hybrid assembly with either PacBio or ONT reads facilitated high-quality genome reconstruction, and was superior to the long-read assembly and polishing approach evaluated with respect to accuracy and completeness. Combining ONT and Illumina reads fully resolved most genomes without additional manual steps, and at a lower consumables cost per isolate in our setting. Automated hybrid assembly is a powerful tool for complete and accurate bacterial genome assembly
    corecore