399 research outputs found

    Emerging Insights into Antibiotic-Associated Diarrhea and Clostridium difficile Infection through the Lens of Microbial Ecology

    Get PDF
    Antibiotics are the main, and often only, clinical intervention for prophylactic and active treatment of bacterial infections in humans. Perhaps it is not surprising that these drugs also shift the composition of commensal bacteria inside our bodies, especially those within the gut microbial community (microbiota). How these dynamics ultimately affect the function of the gut microbiota, however, is not fully appreciated. Likewise, how antibiotic induced changes facilitate the outgrowth and pathogenicity of certain bacterial strains remains largely enigmatic. Here, we discuss the merits of a microbial ecology approach toward understanding a common side effect of antibiotic use, antibiotic-associated diarrhea (AAD), and the opportunistic bacterial infections that sometimes underlie it. As an example, we discuss how this approach is being used to address complex disease dynamics during Clostridium difficile infection

    Use cases, best practice and reporting standards for metabolomics in regulatory toxicology

    Get PDF
    Metabolomics is a widely used technology in academic research, yet its application to regulatory science has been limited. The most commonly cited barrier to its translation is lack of performance and reporting standards. The MEtabolomics standaRds Initiative in Toxicology (MERIT) project brings together international experts from multiple sectors to address this need. Here, we identify the most relevant applications for metabolomics in regulatory toxicology and develop best practice guidelines, performance and reporting standards for acquiring and analysing untargeted metabolomics and targeted metabolite data. We recommend that these guidelines are evaluated and implemented for several regulatory use cases

    Noiseless Linear Amplification and Distillation of Entanglement

    Full text link
    The idea of signal amplification is ubiquitous in the control of physical systems, and the ultimate performance limit of amplifiers is set by quantum physics. Increasing the amplitude of an unknown quantum optical field, or more generally any harmonic oscillator state, must introduce noise. This linear amplification noise prevents the perfect copying of the quantum state, enforces quantum limits on communications and metrology, and is the physical mechanism that prevents the increase of entanglement via local operations. It is known that non-deterministic versions of ideal cloning and local entanglement increase (distillation) are allowed, suggesting the possibility of non-deterministic noiseless linear amplification. Here we introduce, and experimentally demonstrate, such a noiseless linear amplifier for continuous-variables states of the optical field, and use it to demonstrate entanglement distillation of field-mode entanglement. This simple but powerful circuit can form the basis of practical devices for enhancing quantum technologies. The idea of noiseless amplification unifies approaches to cloning and distillation, and will find applications in quantum metrology and communications.Comment: Submitted 10 June 200

    Emergence of carbapenemase-producing Klebsiella pneumoniae of sequence type 258 in Michigan, USA

    Get PDF
    The prevalence of carbapenemase-producing Enterobacteriaceae (CPE) in our hospital increased beginning in 2009. We aimed to study the clinical and molecular epidemiology of these emerging isolates. We performed a retrospective review of all adult patients with clinical cultures confirmed as CPE by positive modified Hodge test from 5/2009-5/2010 at the University of Michigan Health System (UMHS). Clinical information was obtained from electronic medical records. Available CPE isolates were analyzed by polymerase chain reaction (PCR) and sequencing of the 16S rRNA encoding gene and blaKPC locus. Multilocus sequence typing (MLST) was used to characterize Klebsiella pneumoniae isolates. Twenty six unique CPE isolates were obtained from 25 adult patients. The majority were Klebsiella pneumoniae (n=17). Other isolates included K. oxytoca (n=3), Citrobacter freundii (n=2), Enterobacter cloacae (n=2), Enterobacter aerogenes (n=1) and Escherichia coli (n=1). Molecular characterization of 19 available CPE isolates showed that 13 (68%) carried the KPC-3 allele and 6 (32%) carried the KPC-2 allele. Among 14 available K. pneumoniae strains, 12 (86%) carried the KPC-3 allele and belonged to a common lineage, sequence type (ST) 258. The other 2 (14%) K. pneumoniae isolates carried the KPC-2 allele and belonged to two unique STs. Among these ST 258 strains, 67% were isolated from patients with prior exposures to health care settings outside of our institution. In contrast, all CPE isolates carrying the KPC-2 allele and all non ST 258 CPE isolates had acquisition attributable to our hospital. Molecular epidemiology of carbapenemase producing K. pneumoniae suggests that KPC-3 producing K. pneumoniae isolates of a common lineage, sequence type (ST 258), are emerging in our hospital. While ST 258 is a dominant sequence type throughout the United States, this study is the first to report its presence in Michigan

    Clostridium difficile ribotype diversity at six health care institutions in the United States

    Get PDF
    Capillary-based PCR ribotyping was used to quantify the presence/absence and relative abundance of 98 Clostridium difficile ribotypes from clinical cases of disease at health care institutions in six states of the United States. Regionally important ribotypes were identified, and institutions in close proximity did not necessarily share more ribotype diversity than institutions that were farther apart

    Entanglement quantification from incomplete measurements: Applications using photon-number-resolving weak homodyne detectors

    Full text link
    The certificate of success for a number of important quantum information processing protocols, such as entanglement distillation, is based on the difference in the entanglement content of the quantum states before and after the protocol. In such cases, effective bounds need to be placed on the entanglement of non-local states consistent with statistics obtained from local measurements. In this work, we study numerically the ability of a novel type of homodyne detector which combines phase sensitivity and photon-number resolution to set accurate bounds on the entanglement content of two-mode quadrature squeezed states without the need for full state tomography. We show that it is possible to set tight lower bounds on the entanglement of a family of two-mode degaussified states using only a few measurements. This presents a significant improvement over the resource requirements for the experimental demonstration of continuous-variable entanglement distillation, which traditionally relies on full quantum state tomography.Comment: 18 pages, 6 figure

    Demonstrating the reliability of in vivo metabolomics based chemical grouping:towards best practice

    Get PDF
    While grouping/read-across is widely used to fill data gaps, chemical registration dossiers are often rejected due to weak category justifications based on structural similarity only. Metabolomics provides a route to robust chemical categories via evidence of shared molecular effects across source and target substances. To gain international acceptance, this approach must demonstrate high reliability, and best-practice guidance is required. The MetAbolomics ring Trial for CHemical groupING (MATCHING), comprising six industrial, government and academic ring-trial partners, evaluated inter-laboratory reproducibility and worked towards best-practice. An independent team selected eight substances (WY-14643, 4-chloro-3-nitroaniline, 17α-methyl-testosterone, trenbolone, aniline, dichlorprop-p, 2-chloroaniline, fenofibrate); ring-trial partners were blinded to their identities and modes-of-action. Plasma samples were derived from 28-day rat tests (two doses per substance), aliquoted, and distributed to partners. Each partner applied their preferred liquid chromatography–mass spectrometry (LC–MS) metabolomics workflows to acquire, process, quality assess, statistically analyze and report their grouping results to the European Chemicals Agency, to ensure the blinding conditions of the ring trial. Five of six partners, whose metabolomics datasets passed quality control, correctly identified the grouping of eight test substances into three categories, for both male and female rats. Strikingly, this was achieved even though a range of metabolomics approaches were used. Through assessing intrastudy quality-control samples, the sixth partner observed high technical variation and was unable to group the substances. By comparing workflows, we conclude that some heterogeneity in metabolomics methods is not detrimental to consistent grouping, and that assessing data quality prior to grouping is essential. We recommend development of international guidance for quality-control acceptance criteria. This study demonstrates the reliability of metabolomics for chemical grouping and works towards best-practice

    Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus

    Full text link
    Background: In a murine model of inflammatory bowel disease (IBD), treatment of colitis in IL-10 gene-deficient mice with the parasitic helminth Heligmosomoides polygyrus ameliorates colonic inflammation. The cellular and molecular mechanisms driving this therapeutic host response are being studied vigorously. One proposed mechanism is that H. polygyrus infection favors the outgrowth or suppression of certain bacteria, which in turn help modulate host immunity. Methods: To quantify the effect of H. polygyrus infection on the composition of the gastrointestinal (GI) tract microbiota, we conducted two independent microbial ecology analyses of C57BL/6 mice. We obtained and analyzed 3,353 bacterial 16S rRNA encoding gene sequences from the ileum and cecum of infected and uninfected mice as well as incective H. polygyrus larvae at the outset of the second experiment and adult worms taken directly from the mouse duodenum at the end of the second experiment. Results: We found that a significant shift in the abundance and relative distribution of bacterial species in the ileum of mice is associated with H. polygyrus infection. Members of the bacterial family Lactobacillaceae significantly increased in abundance in the ileum of infected mice reproducibly in two independent experiments despite having different microbiotas present at the outset of each experiment. Conclusions: These data support the concept that helminth infection shifts the composition of intestinal bacteria. The clinical consequences of these shifts in intestinal flora are yet to be explored. (Inflamm Bowel Dis 2010)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78230/1/21299_ftp.pd

    Obscured phylogeny and possible recombinational dormancy in Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Escherichia coli </it>is one of the best studied organisms in all of biology, but its phylogenetic structure has been difficult to resolve with current data and analytical techniques. We analyzed single nucleotide polymorphisms in chromosomes of representative strains to reconstruct the topology of its emergence.</p> <p>Results</p> <p>The phylogeny of <it>E. coli </it>varies according to the segment of chromosome analyzed. Recombination between extant <it>E. coli </it>groups is largely limited to only three intergroup pairings.</p> <p>Conclusions</p> <p>Segment-dependent phylogenies most likely are legacies of a complex recombination history. However, <it>E. coli </it>are now in an epoch in which they no longer broadly share DNA. Using the definition of species as organisms that freely exchange genetic material, this recombinational dormancy could reflect either the end of <it>E. coli </it>as a species, or herald the coalescence of <it>E. coli </it>groups into new species.</p

    Clinical Application of Radioembolization in Hepatic Malignancies: Protocol for a Prospective Multicenter Observational Study

    Get PDF
    Background: Radioembolization, also known as transarterial radioembolization or selective internal radiation therapy with yttrium-90 (90Y) resin microspheres, is an established treatment modality for patients with primary and secondary liver tumors. However, large-scale prospective observational data on the application of this treatment in a real-life clinical setting is lacking. Objective: The main objective is to collect data on the clinical application of radioembolization with 90Y resin microspheres to improve the understanding of the impact of this treatment modality in its routine practice setting. Methods: Eligible patients are 18 years or older and receiving radioembolization for primary and secondary liver tumors as part of routine practice, as well as have signed informed consent. Data is collected at baseline, directly after treatment, and at every 3-month follow-up until 24 months or study exit. The primary objective of the Cardiovascular and Interventional Radiological Society of Europe Registry for SIR-Spheres Therapy (CIRT) is to observe the clinical application of radioembolization. Secondary objectives include safety, effectiveness in terms of overall survival, progression-free survival (PFS), liver-specific PFS, imaging response, and change in quality of life. Results: Between January 2015 and December 2017, 1047 patients were included in the study. The 24-month follow-up period ended in December 2019. The first results are expected in the third quarter of 2020. Conclusions: The CIRT is the largest observational study on radioembolization to date and will provide valuable insights to the clinical application of this treatment modality and its real-life outcomes
    corecore