17 research outputs found

    Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease

    Get PDF
    GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α–β), “A” isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP– GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter–intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system

    Family Experiences with Care for Children with Inherited Metabolic Diseases in Canada: A Cross-Sectional Survey

    Get PDF
    Background and Objective: Children with inherited metabolic diseases often require complex and highly specialized care. Patient and family-centered care can improve health outcomes that are important to families. This study aimed to examine experiences of family caregivers (parents/guardians) of children diagnosed with inherited metabolic diseases with healthcare to inform strategies to improve those experiences. Methods: A cross-sectional mailed survey was conducted of family caregivers recruited from an ongoing cohort study. Participants rated their healthcare experiences during their child’s visits to five types of healthcare settings common for inherited metabolic diseases: the metabolic clinic, the emergency department, hospital inpatient units, the blood laboratory, and the pharmacy. Participants provided narrative descriptions of any memorable negative or positive experiences. Results: There were 248 respondents (response rate 49%). Caregivers were generally very or somewhat satisfied with the care provided at each care setting. Appropriate treatment, provider knowledge, provider communication, and care coordination were deemed essential aspects of satisfaction with care by the majority of participants across many settings. Memorable negative experiences were reported by 8–22% of participants, varying by setting. Among participants who reported memorable negative experiences, contributing factors included providers’ demeanor, lack of communication, lack of involvement of the family, and disregard of an emergency protocol letter provided by the family. Conclusions: While caregivers’ satisfaction with care for children with inherited metabolic diseases was high, we identified gaps in family-centered care and factors contributing to negative experiences that are important to consider in the future development of strategies to improve pediatric care for inherited metabolic diseases

    Haploinsufficiency of PRR12 causes a spectrum of neurodevelopmental, eye, and multisystem abnormalities

    Get PDF
    PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities

    Immune Responses and Immunosuppressive Strategies for Adeno-Associated Virus-Based Gene Therapy for Treatment of Central Nervous System Disorders: Current Knowledge and Approaches

    No full text
    Adeno-associated viruses (AAVs) are being increasingly used as gene therapy vectors in clinical studies especially targeting central nervous system (CNS) disorders. Correspondingly, host immune responses to the AAV capsid or the transgene-encoded protein have been observed in various clinical and preclinical studies. Such immune responses may adversely impact patients' health, prevent viral transduction, prevent repeated dosing strategies, eliminate transduced cells, and pose a significant barrier to the potential effectiveness of AAV gene therapy. Consequently, multiple immunomodulatory strategies have been used in attempts to limit immune-mediated responses to the vector, enable readministration of AAV gene therapy, prevent end-organ toxicity, and increase the duration of transgene-encoded protein expression. Herein we review the innate and adaptive immune responses that may occur during CNS-targeted AAV gene therapy as well as host- and treatment-specific factors that could impact the immune response. We also summarize the available preclinical and clinical data on immune responses specifically to CNS-targeted AAV gene therapy and discuss potential strategies for incorporating prophylactic immunosuppression regimens to circumvent adverse immune responses

    Clinical spectrum of KIAA2022 pathogenic variants in males:Case report of two boys with KIAA2022 pathogenic variants and review of the literature

    No full text
    KIAA2022 is an X-linked intellectual disability (XLID) syndrome affecting males more severely than females. Few males with KIAA2022 variants and XLID have been reported. We present a clinical report of two unrelated males, with two nonsense KIAA2022 pathogenic variants, with profound intellectual disabilities, limited language development, strikingly similar autistic behavior, delay in motor milestones, and postnatal growth restriction. Patient 1, 19-years-old, has long ears, deeply set eyes with keratoconus, strabismus, a narrow forehead, anteverted nares, cafe-au-lait spots, macroglossia, thick vermilion of the upper and lower lips, and prognathism. He has gastroesophageal reflux, constipation with delayed rectosigmoid colonic transit time, difficulty regulating temperature, several musculoskeletal issues, and a history of one grand mal seizure. Patient 2, 10-years-old, has mild dysmorphic features, therapy resistant vomiting with diminished motility of the stomach, mild constipation, cortical visual impairment with intermittent strabismus, axial hypotonia, difficulty regulating temperature, and cutaneous mastocytosis. Genetic testing identified KIAA2022 variant c.652C> T(p.Arg218*) in Patient 1, and a novel nonsense de novo variant c.2707G> T(p.Glu903*) in Patient 2. We also summarized features of all reported males with KIAA2022 variants to date. This report not only adds knowledge of a novel pathogenic variant to the KIAA2022 variant database, but also likely extends the spectrum by describing novel dysmorphic features and medical conditions including macroglossia, cafe-au-lait spots, keratoconus, severe cutaneous mastocytosis, and motility problems of the GI tract, which may help physicians involved in the care of patients with this syndrome. Lastly, we describe the power of social media in bringing families with rare medical conditions together

    Efficacy of a Bicistronic Vector for Correction of Sandhoff Disease in a Mouse Model

    No full text
    GM2 gangliosidoses are a family of severe neurodegenerative disorders resulting from a deficiency in the β-hexosaminidase A enzyme. These disorders include Tay-Sachs disease and Sandhoff disease, caused by mutations in the HEXA gene and HEXB gene, respectively. The HEXA and HEXB genes are required to produce the α and β subunits of the β-hexosaminidase A enzyme, respectively. Using a Sandhoff disease mouse model, we tested for the first time the potential of a comparatively lower dose (2.04 × 1013 vg/kg) of systemically delivered single-stranded adeno-associated virus 9 expressing both human HEXB and human HEXA cDNA under the control of a single promoter with a P2A-linked bicistronic vector design to correct the neurological phenotype. A bicistronic design allows maximal overexpression and secretion of the Hex A enzyme. Neonatal mice were injected with either this ssAAV9-HexB-P2A-HexA vector or a vehicle solution via the superficial temporal vein. An increase in survival of 56% compared with vehicle-injected controls and biochemical analysis of the brain tissue and serum revealed an increase in enzyme activity and a decrease in brain GM2 ganglioside buildup. This is a proof-of-concept study showing the “correction efficacy” of a bicistronic AAV9 vector delivered intravenously for GM2 gangliosidoses. Further studies with higher doses are warranted. Keywords: Sandhoff disease, Tay-Sachs disease, AAV9, gene therapy, hexosaminidas

    Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo

    Get PDF
    Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels

    Novel Vector Design and Hexosaminidase Variant Enabling Self-Complementary Adeno-Associated Virus for the Treatment of Tay-Sachs Disease

    No full text
    G(M2) gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of G(M2) ganglioside (G(M2)) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α–β), “A” isoenzyme of lysosomal β-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the β-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the G(M2) activator protein (G(M2)AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, μ, incorporating critical sequences from the β-subunit that produce a stable homodimer (HexM) and promote functional interactions with the G(M2)AP– G(M2) complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter–intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing G(M2) storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system
    corecore