1,439 research outputs found
Assessing the efficiency of first-principles basin-hopping sampling
We present a systematic performance analysis of first-principles
basin-hopping (BH) runs, with the target to identify all low-energy isomers of
small Si and Cu clusters described within density-functional theory. As
representative and widely employed move classes we focus on single-particle and
collective moves, in which one or all atoms in the cluster at once are
displaced in a random direction by some prescribed move distance, respectively.
The analysis provides detailed insights into the bottlenecks and governing
factors for the sampling efficiency, as well as simple rules-of-thumb for
near-optimum move settings, that are intriguingly independent of the distinctly
different chemistry of Si and Cu. At corresponding settings, the observed
performance of the BH algorithm employing two simple, general-purpose move
classes is already very good, and for the small systems studied essentially
limited by frequent revisits to a few dominant isomers.Comment: 11 pages including 8 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Characterization of the Dynamics of Glass-forming Liquids from the Properties of the Potential Energy Landscape
We develop a framework for understanding the difference between strong and
fragile behavior in the dynamics of glass-forming liquids from the properties
of the potential energy landscape. Our approach is based on a master equation
description of the activated jump dynamics among the local minima of the
potential energy (the so-called inherent structures) that characterize the
potential energy landscape of the system. We study the dynamics of a small
atomic cluster using this description as well as molecular dynamics simulations
and demonstrate the usefulness of our approach for this system. Many of the
remarkable features of the complex dynamics of glassy systems emerge from the
activated dynamics in the potential energy landscape of the atomic cluster. The
dynamics of the system exhibits typical characteristics of a strong supercooled
liquid when the system is allowed to explore the full configuration space. This
behavior arises because the dynamics is dominated by a few lowest-lying minima
of the potential energy and the potential energy barriers between these minima.
When the system is constrained to explore only a limited region of the
potential energy landscape that excludes the basins of attraction of a few
lowest-lying minima, the dynamics is found to exhibit the characteristics of a
fragile liquid.Comment: 13 pages, 6 figure
Phase Transitions from Saddles of the Potential Energy Landscape
The relation between saddle points of the potential of a classical
many-particle system and the analyticity properties of its thermodynamic
functions is studied. For finite systems, each saddle point is found to cause a
nonanalyticity in the Boltzmann entropy, and the functional form of this
nonanalytic term is derived. For large systems, the order of the nonanalytic
term increases unboundedly, leading to an increasing differentiability of the
entropy. Analyzing the contribution of the saddle points to the density of
states in the thermodynamic limit, our results provide an explanation of how,
and under which circumstances, saddle points of the potential energy landscape
may (or may not) be at the origin of a phase transition in the thermodynamic
limit. As an application, the puzzling observations by Risau-Gusman et al. on
topological signatures of the spherical model are elucidated.Comment: 5 pages, no figure
Energy Landscape and Global Optimization for a Frustrated Model Protein
The three-color (BLN) 69-residue model protein was designed to exhibit frustrated folding. We investigate the energy landscape of this protein using disconnectivity graphs and compare it to a Go model, which is designed to reduce the frustration by removing all non-native attractive interactions. Finding the global minimum on a frustrated energy landscape is a good test of global optimization techniques, and we present calculations evaluating the performance of basin-hopping and genetic algorithms for this system.Comparisons are made with the widely studied 46-residue BLN protein.We show that the energy landscape of the 69-residue BLN protein contains several deep funnels, each of which corresponds to a different β-barrel structure
Potential Energy Landscape of the Apparent First-Order Phase Transition between Low-Density and High-Density Amorphous Ice
The potential energy landscape (PEL) formalism is a valuable approach within
statistical mechanics for describing supercooled liquids and glasses. Here we
use the PEL formalism and computer simulations to study the pressure-induced
transformations between low-density amorphous ice (LDA) and high-density
amorphous ice (HDA) at different temperatures. We employ the ST2 water model
for which the LDA-HDA transformations are remarkably sharp, similar to what is
observed in experiments, and reminiscent of a first-order phase transition. Our
results are consistent with the view that LDA and HDA configurations are
associated with two distinct regions (megabasins) of the PEL that are separated
by a potential energy barrier. At higher temperature, we find that low-density
liquid (LDL) configurations are located in the same megabasin as LDA, and that
high-density liquid (HDL) configurations are located in the same megabasin as
HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations
occur along paths that interconnect these two megabasins, but that the path
followed by the liquid is different than the path followed by the amorphous
solid. At higher pressure, we also study the liquid-to-ice-VII first-order
phase transition, and find that the behavior of the PEL properties across this
transition are qualitatively similar to the changes found during the LDA-HDA
transformation. This similarity supports the interpretation that the LDA-HDA
transformation is a first-order-like phase transition between
out-of-equilibrium states.Comment: 29 pages, 8 figure
Nature of Ar bonding to small Co_n^+ clusters and its effect on the structure determination by far-infrared absorption spectroscopy
Far-infrared vibrational spectroscopy by multiple photon dissociation has
proven to be a very useful technique for the structural fingerprinting of small
metal clusters. Contrary to previous studies on cationic V, Nb and Ta clusters,
measured vibrational spectra of small cationic cobalt clusters show a strong
dependence on the number of adsorbed Ar probe atoms, which increases with
decreasing cluster size. Focusing on the series Co_4^+ to Co_8^+ we therefore
use density-functional theory to analyze the nature of the Ar-Co_n^+ bond and
its role for the vibrational spectra. In a first step, energetically low-lying
isomer structures are identified through first-principles basin-hopping
sampling runs and their vibrational spectra computed for a varying number of
adsorbed Ar atoms. A comparison of these fingerprints with the experimental
data enables in some cases a unique assignment of the cluster structure.
Independent of the specific low-lying isomer, we obtain a pronounced increase
of the Ar binding energy for the smallest cluster sizes, which correlates
nicely with the observed increased influence of the Ar probe atoms on the IR
spectra. Further analysis of the electronic structure motivates a simple
electrostatic picture that not only explains this binding energy trend, but
also why the influence of the rare-gas atom is much stronger than in the
previously studied systems.Comment: 12 pages including 10 figures; related publications can be found at
http://www.fhi-berlin.mpg.de/th/th.htm
Theoretical study of finite temperature spectroscopy in van der Waals clusters. I. Probing phase changes in CaAr_n
The photoabsorption spectra of calcium-doped argon clusters CaAr_n are
investigated at thermal equilibrium using a variety of theoretical and
numerical tools. The influence of temperature on the absorption spectra is
estimated using the quantum superposition method for a variety of cluster sizes
in the range 6<=n<=146. At the harmonic level of approximation, the absorption
intensity is calculated through an extension of the Gaussian theory by Wadi and
Pollak [J. Chem. Phys. vol 110, 11890 (1999)]. This theory is tested on simple,
few-atom systems in both the classical and quantum regimes for which highly
accurate Monte Carlo data can be obtained. By incorporating quantum anharmonic
corrections to the partition functions and respective weights of the isomers,
we show that the superposition method can correctly describe the
finite-temperature spectroscopic properties of CaAr_n systems. The use of the
absorption spectrum as a possible probe of isomerization or phase changes in
the argon cluster is discussed at the light of finite-size effects.Comment: 17 pages, 9 figure
A dynamical theory of homogeneous nucleation for colloids and macromolecules
Homogeneous nucleation is formulated within the context of fluctuating
hydrodynamics. It is shown that for a colloidal or macromolecular system in the
strong damping limit the most likely path for nucleation can be determined by
gradient descent in density space governed by a nontrivial metric fixed by the
dynamics. The theory provides a justification and extension of more heuristic
equilibrium approaches based solely on the free energy. It is illustrated by
application to liquid-vapor nucleation where it is shown that, in contrast to
most free energy-based studies, the smallest clusters correspond to long
wavelength, small amplitude perturbations.Comment: final version; 4 pages, 2 figure
The Gentlest Ascent Dynamics
Dynamical systems that describe the escape from the basins of attraction of
stable invariant sets are presented and analyzed. It is shown that the stable
fixed points of such dynamical systems are the index-1 saddle points.
Generalizations to high index saddle points are discussed. Both gradient and
non-gradient systems are considered. Preliminary results on the nature of the
dynamical behavior are presented
- …