54 research outputs found

    Defective regulation of glycoprotein free alpha-subunit in males with isolated gonadotropin-releasing hormone deficiency--a clinical research center study

    No full text
    During long term replacement with a GnRH regimen that restores their gonadotropin and sex steroid levels to normal, men with idiopathic hypogonadotropic hypogonadism (IHH) exhibit excessive secretion of pituitary free alpha-subunit (FAS). To characterize further the dose and duration of exogenous GnRH required to elicit this response, FAS, LH, FSH, and testosterone were determined during the first 8 weeks of GnRH administration in 10 men with IHH. The GnRH dose was increased stepwise every 2 weeks from 5 to 100 ng/kg every 2 h. Hormonal responses were compared with normative data for both pubertal boys and adult men. Low baseline levels of LH (mean +/- SEM, 0.9 +/- 0.03 IU/L), FSH (2.5 +/- 0.4 IU/L), FAS (148 +/- 21 ng/L), and testosterone (2.5 +/- 0.3 nmol/L) increased progressively after GnRH replacement. Mean FAS levels and pulse amplitudes significantly exceeded those in normal adult men by 4-6 weeks when their LH responses to GnRH administration remained below adult norms. By week 8 (50 ng GnRH/kg every 2 h), mean levels of LH, FSH, and FAS (13.7 +/- 2.1 IU/L, 15.4 +/- 4.0 IU/L, 627 +/- 75 ng/L, respectively) significantly exceeded adult male concentrations (P < 0.03). However, mean LH and FSH concentrations were not significantly different from midpubertal controls, in whom FAS levels were comparable to those in normal adults, verifying the excessive nature of FAS secretion relative to intact gonadotropins in the IHH patients. As this imbalance between FAS and dimeric gonadotropin secretion was established early in the current study when low doses of GnRH presumably resulted in low levels of receptor occupancy in vivo, it does not appear to result from partial pituitary desensitization induced by pharmacological GnRH stimulation. Rather, it appears to represent an inherent property of the GnRH-deficient state that is unmasked when GnRH input to the pituitary is restored. Further work will be necessary to elucidate the mechanism of this apparent defect in FAS regulation in GnRH-deficient men

    Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism

    No full text
    Mutations in KAL1 and FGFR1 cause Kallmann syndrome (KS), whereas mutations in the GNRHR and GPR54 genes cause idiopathic hypogonadotropic hypogonadism with normal olfaction (nIHH). Mixed pedigrees containing both KS and nIHH have also been described; however, the genetic cause of these rare cases is unknown. We examined the FGFR1 gene in seven nIHH subjects who either belonged to a mixed pedigree (n = 5) or who had associated midline defects (n = 2). Heterozygous FGFR1 mutations were found in three of seven unrelated nIHH probands with normal MRI of the olfactory system: (i) G237S in an nIHH female and a KS brother; (ii) (P722H and N724K) in an nIHH male missing two teeth and his mother with isolated hyposmia; and (iii) Q680X in a nIHH male with cleft lip/palate and missing teeth, his brother with nIHH, and his father with delayed puberty. We show that these mutations lead to receptor loss-of-function. The Q680X leads to an inactive FGFR1, which lacks a major portion of the tyrosine kinase domain (TKD). The G237S mutation inhibits proper folding of D2 of the FGFR1 and likely leads to the loss of cell-surface expression of FGFR1. In contrast, the (P722H and N724K) double mutation causes structural perturbations in TKD, reducing the catalytic activity of TKD. We conclude that loss-of-function mutations in FGFR1 cause nIHH with normal MRI of the olfactory system. These mutations also account for some of the mixed pedigrees, thus challenging the current idea that KS and nIHH are distinct entities

    Targeted Treatment of Individuals With Psychosis Carrying a Copy Number Variant Containing a Genomic Triplication of the Glycine Decarboxylase Gene

    No full text
    BACKGROUND: The increased mutational burden for rare structural genomic variants in schizophrenia and other neurodevelopmental disorders has so far not yielded therapies targeting the biological effects of specific mutations. We identified two carriers (mother and son) of a triplication of the gene encoding glycine decarboxylase, GLDC, presumably resulting in reduced availability of the N-methyl-D-aspartate receptor coagonists glycine and D-serine and N-methyl-D-aspartate receptor hypofunction. Both carriers had a diagnosis of a psychotic disorder. METHODS: We carried out two double-blind, placebo-controlled clinical trials of N-methyl-D-aspartate receptor augmentation of psychotropic drug treatment in these two individuals. Glycine was used in the first clinical trial, and D-cycloserine was used in the second one. RESULTS: Glycine or D-cycloserine augmentation of psychotropic drug treatment each improved psychotic and mood symptoms in placebo-controlled trials. CONCLUSIONS: These results provide two independent proof-of-principle demonstrations of symptom relief by targeting a specific genotype and explicitly link an individual mutation to the pathophysiology of psychosis and treatment response
    corecore