1,545 research outputs found
Partial Coherence Estimation via Spectral Matrix Shrinkage under Quadratic Loss
Partial coherence is an important quantity derived from spectral or precision
matrices and is used in seismology, meteorology, oceanography, neuroscience and
elsewhere. If the number of complex degrees of freedom only slightly exceeds
the dimension of the multivariate stationary time series, spectral matrices are
poorly conditioned and shrinkage techniques suggest themselves. When true
partial coherencies are quite large then for shrinkage estimators of the
diagonal weighting kind it is shown empirically that the minimization of risk
using quadratic loss (QL) leads to oracle partial coherence estimators superior
to those derived by minimizing risk using Hilbert-Schmidt (HS) loss. When true
partial coherencies are small the methods behave similarly. We derive two new
QL estimators for spectral matrices, and new QL and HS estimators for precision
matrices. In addition for the full estimation (non-oracle) case where certain
trace expressions must also be estimated, we examine the behaviour of three
different QL estimators, the precision matrix one seeming particularly robust
and reliable. For the empirical study we carry out exact simulations derived
from real EEG data for two individuals, one having large, and the other small,
partial coherencies. This ensures our study covers cases of real-world
relevance
Random Matrix Derived Shrinkage of Spectral Precision Matrices
Much research has been carried out on shrinkage methods for real-valued
covariance matrices. In spectral analysis of -vector-valued time series
there is often a need for good shrinkage methods too, most notably when the
complex-valued spectral matrix is singular. The equivalent of the Ledoit-Wolf
(LW) covariance matrix estimator for spectral matrices can be improved on using
a Rao-Blackwell estimator, and using random matrix theory we derive its form.
Such estimators can be used to better estimate inverse spectral (precision)
matrices too, and a random matrix method has previously been proposed and
implemented via extensive simulations. We describe the method, but carry out
computations entirely analytically, and suggest a way of selecting an important
parameter using a predictive risk approach. We show that both the Rao-Blackwell
estimator and the random matrix estimator of the precision matrix can
substantially outperform the inverse of the LW estimator in a time series
setting. Our new methodology is applied to EEG-derived time series data where
it is seen to work well and deliver substantial improvements for precision
matrix estimation
Measurement of the 18Ne(a,p_0)21Na reaction cross section in the burning energy region for X-ray bursts
The 18Ne(a,p)21Na reaction provides one of the main HCNO-breakout routes into
the rp-process in X-ray bursts. The 18Ne(a,p_0)21Na reaction cross section has
been determined for the first time in the Gamow energy region for peak
temperatures T=2GK by measuring its time-reversal reaction 21Na(p,a)18Ne in
inverse kinematics. The astrophysical rate for ground-state to ground-state
transitions was found to be a factor of 2 lower than Hauser-Feshbach
theoretical predictions. Our reduced rate will affect the physical conditions
under which breakout from the HCNO cycles occurs via the 18Ne(a,p)21Na
reaction.Comment: 5 pages, 3 figures, accepted for publication on Physical Review
Letter
Bistability of Slow and Fast Traveling Waves in Fluid Mixtures
The appearence of a new type of fast nonlinear traveling wave states in
binary fluid convection with increasing Soret effect is elucidated and the
parameter range of their bistability with the common slower ones is evaluated
numerically. The bifurcation behavior and the significantly different
spatiotemporal properties of the different wave states - e.g. frequency, flow
structure, and concentration distribution - are determined and related to each
other and to a convenient measure of their nonlinearity. This allows to derive
a limit for the applicability of small amplitude expansions. Additionally an
universal scaling behavior of frequencies and mixing properties is found.
PACS: 47.20.-k, 47.10.+g, 47.20.KyComment: 4 pages including 5 Postscript figure
Measurement of two-halo neutron transfer reaction p(Li,Li)t at 3 MeV
The p(\nuc{11}{Li},\nuc{9}{Li})t reaction has been studied for the first time
at an incident energy of 3 MeV delivered by the new ISAC-2 facility at
TRIUMF. An active target detector MAYA, build at GANIL, was used for the
measurement. The differential cross sectionshave been determined for
transitions to the \nuc{9}{Li} ground andthe first excited states in a wide
range of scattering angles. Multistep transfer calculations using different
\nuc{11}{Li} model wave functions, shows that wave functions with strong
correlations between the halo neutrons are the most successful in reproducing
the observation.Comment: 6 pages, 3 figures, submitted to Physical Review Letter
Lifetime of 19Ne*(4.03 MeV)
The Doppler-shift attenuation method was applied to measure the lifetime of
the 4.03 MeV state in 19Ne. Utilizing a 3He-implanted Au foil as a target, the
state was populated using the 20Ne(3He,alpha)19Ne reaction in inverse
kinematics at a 20Ne beam energy of 34 MeV. De-excitation gamma rays were
detected in coincidence with alpha particles. At the 1 sigma level, the
lifetime was determined to be 11 +4, -3 fs and at the 95.45% confidence level
the lifetime is 11 +8, -7 fs.Comment: 6 pages, submitted to Phys. Rev.
The just-noticeable difference in speech-to-noise ratio
Just-noticeable differences (JNDs) have been measured for various features of sounds, but despite its importance to communication, there is no benchmark for what is a just-noticeableâand possibly meaningfulâdifference in speech-to-noise ratio (SNR). SNR plays a crucial role in speech communication for normal-hearing and hearing-impaired listeners. Difficulty hearing speech in background noiseâa poor SNRâoften leads to dissatisfaction with hearing-assistance devices. While such devices attempt through various strategies to address this problem, it is not currently known how much improvement in SNR is needed to provide a noticeable benefit. To investigate what is a noticeable benefit, we measured the JND in SNR for both normal-hearing and hearing-impaired listeners. Here, we report the SNR JNDs of 69 participants of varying hearing ability, estimated using either an adaptive or fixed-level procedure. The task was to judge which of the two intervals containing a sentence in speech-spectrum noise presented over headphones was clearer. The level of each interval was roved to reduce the influence of absolute level cues. The results of both procedures showed an average SNR JND of 3âdB that was independent of hearing ability. Further experiments using a subset of normal-hearing listeners showed that level roving does elevate threshold. These results suggest that noise reduction schemes may need to achieve a benefit greater than 3âdB to be reliably discriminable
The Effect of Ethanol on the Release of Opioids from Oral Prolonged-Release Preparations
Recent experience has prompted the US FDA to consider whether ethanol ingestion may modify the release characteristics of prolonged-release formulations, where dose dumping may be an issue for patient safety
- âŠ